Sharp upper bounds on resonances for perturbations of hyperbolic space

نویسنده

  • David Borthwick
چکیده

For certain compactly supported metric and/or potential perturbations of the Laplacian on H, we establish an upper bound on the resonance counting function with an explicit constant that depends only on the dimension, the radius of the unperturbed region in H, and the volume of the metric perturbation. This constant is shown to be sharp in the case of scattering by a spherical obstacle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Geometric Upper Bounds on Resonances for Surfaces with Hyperbolic Ends

We establish a sharp geometric constant for the upper bound on the resonance counting function for surfaces with hyperbolic ends. An arbitrary metric is allowed within some compact core, and the ends may be of hyperbolic planar, funnel, or cusp type. The constant in the upper bound depends only on the volume of the core and the length parameters associated to the funnel or hyperbolic planar end...

متن کامل

Sharp Bounds on the PI Spectral Radius

In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.

متن کامل

Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs

In $1994,$ degree distance  of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of  multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the  multiplicative version of degree distance and multiplicative ver...

متن کامل

Upper and Lower Bounds on Resonances for Manifolds Hyperbolic near Infinity

For a conformally compact manifold that is hyperbolic near infinity and of dimension n + 1, we complete the proof of the optimal O(r) upper bound on the resonance counting function, correcting a mistake in the existing literature. In the case of a compactly supported perturbation of a hyperbolic manifold, we establish a Poisson formula expressing the regularized wave trace as a sum over scatter...

متن کامل

An Upper Bound on the First Zagreb Index in Trees

In this paper we give sharp upper bounds on the Zagreb indices and characterize all trees achieving equality in these bounds. Also, we give lower bound on first Zagreb coindex of trees.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Asymptotic Analysis

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2010