Multifunctional two-stage riser fluid catalytic cracking process
نویسندگان
چکیده
This paper described the discovering process of some shortcomings of the conventional fluid catalytic cracking (FCC) process and the proposed two-stage riser (TSR) FCC process for decreasing dry gas and coke yields and increasing light oil yield, which has been successfully applied in 12 industrial units. Furthermore, the multifunctional two-stage riser (MFT) FCC process proposed on the basis of the TSR FCC process was described, which were carried out by the optimization of reaction conditions for fresh feedstock and cycle oil catalytic cracking, respectively, by the coupling of cycle oil cracking and light FCC naphtha upgrading processes in the second-stage riser, and the specially designed reactor for further reducing the olefin content of gasoline. The pilot test showed that it can further improve the product quality, increase the diesel yield, and enhance the conversion of heavy oil.
منابع مشابه
Prediction of gasoline yield in a fluid catalytic cracking (FCC) riser using k-epsilon turbulence and 4-lump kinetic models: A computational fluid dynamics (CFD) approach
FCC riser; Computational fluid dynamics (CFD); Cracking reaction kinetics; Hydrodynamics; 4-Lump kinetic model; k-Epsilon turbulence model Abstract Fluid catalytic cracking (FCC) is an essential process for the conversion of gas oil to gasoline. This study is an effort to model the phenomenon numerically using commercial computational fluid dynamics (CFD) software, heavy density catalyst and 4-...
متن کاملAnalysis of process variables via CFD to evaluate the performance of a FCC riser
Feedstock conversion and yield products are studied through a 3Dmodel simulating the main reactor of the fluid catalytic cracking (FCC) process. Computational fluid dynamic (CFD) is used with Eulerian-Eulerian approach to predict the fluid catalytic cracking behavior. The model considers 12 lumps with catalyst deactivation by coke and poisoning by alkaline nitrides and polycyclic aromatic adsor...
متن کاملAdvances of two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process
Two-stage riser catalytic cracking of heavy oil for maximizing propylene yield (TMP) process proposed by State Key Laboratory of Heavy oil Processing, China University of Petroleum, can remarkably enhance the propylene yield and minimize the dry gas and coke yields, and obtain high-quality light oils (gasoline and diesel). It has been commercialized since 2006. Up to now, three TMP commercial u...
متن کاملThree Dimensional Simulation of Catalytic Cracking Reactions in an Industrial Scale Riser Using a 11-lump Kinetic
Most studies neglect the presence of thermal cracking reactions in industrial FCC process. Nevertheless, the present work proposes a new model which modified the 10-lumps kinetic model given by Jacob el al. (1976), through to inclusion a new lump named dry gas represent the results of the thermal reactions. Similarly as in the 10-lumps kinetic model, the proposed 11-lumps kinetic model consider...
متن کاملOn The Conversion Of Gas Oil In Fluid Catalytic Cracking Risers: Application Of Residence Time Distribution (Rtd) Concept
Risers are considered vital parts on fluidized catalytic cracking (FCC) conversion units. It is inside the riser that the heavy hydrocarbon molecules are cracked into petroleum fractions such as gasoline and liquefied petroleum gas (LPG). A simplified kinetic flow model in combination with the Tank-In-Series model was used to predict the conversion response of an FCC riser to changes in feed te...
متن کامل