Training Deep Neural Networks via Optimization Over Graphs
نویسندگان
چکیده
In this work, we propose to train a deep neural network by distributed optimization over a graph. Two nonlinear functions are considered: the rectified linear unit (ReLU) and a linear unit with both lower and upper cutoffs (DCutLU). The problem reformulation over a graph is realized by explicitly representing ReLU or DCutLU using a set of slack variables. We then apply the alternating direction method of multipliers (ADMM) to update the weights of the network layerwise by solving subproblems of the reformulated problem. Empirical results suggest that the ADMM-based method is less sensitive to overfitting than the stochastic gradient descent (SGD) and Adam methods.
منابع مشابه
A Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملA Hybrid Optimization Algorithm for Learning Deep Models
Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...
متن کاملAdversary Detection in Neural Networks via Persistent Homology
We outline a detection method for adversarial inputs to deep neural networks. By viewing neural network computations as graphs upon which information flows from input space to output distribution, we compare the differences in graphs induced by different inputs. Specifically, by applying persistent homology to these induced graphs, we observe that the structure of the most persistent subgraphs ...
متن کاملAdaptive Learning Rate via Covariance Matrix Based Preconditioning for Deep Neural Networks
Adaptive learning rate algorithms such as RMSProp are widely used for training deep neural networks. RMSProp offers efficient training since it uses first order gradients to approximate Hessianbased preconditioning. However, since the first order gradients include noise caused by stochastic optimization, the approximation may be inaccurate. In this paper, we propose a novel adaptive learning ra...
متن کاملApplication of Wavelet Neural Networks for Improving of Ionospheric Tomography Reconstruction over Iran
In this paper, a new method of ionospheric tomography is developed and evaluated based on the neural networks (NN). This new method is named ITNN. In this method, wavelet neural network (WNN) with particle swarm optimization (PSO) training algorithm is used to solve some of the ionospheric tomography problems. The results of ITNN method are compared with the residual minimization training neura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1702.03380 شماره
صفحات -
تاریخ انتشار 2017