A Convex Decomposition Theorem for 4-Manifolds
نویسندگان
چکیده
An exact manifold with pseudoconvex boundary (PC manifold, for short) is a compact complex manifold X, which admits a strictly pluri-subharmonic Morse function ψ, such that the set of maximum points of ψ coincides with the boundary ∂X. We prefer the term PC manifold, since the combination of words “compact Stein manifold” is likely to precipitate heart palpitations in some mathematicians. Such a manifold admits a symplectic structure ω = i 2 ∂∂ψ
منابع مشابه
O ct 2 00 0 A CONVEX DECOMPOSITION THEOREM FOR FOUR - MANIFOLDS
In this article we show that every smooth closed oriented fourmanifold admits a decomposition into two submanifolds along common boundary. Each of these submanifolds is a complex manifold with pseudo-convex boundary. This imply, in particular, that every smooth closed simply-connected four-manifold is a Stein domain in the the complement of a certain contractible 2-complex.
متن کاملA Convex Decomposition Theorem for Four - Manifolds
In this article we show that every smooth closed oriented fourmanifold admits a decomposition into two submanifolds along common boundary. Each of these submanifolds is a complex manifold with pseudo-convex boundary. This imply, in particular, that every smooth closed simply-connected four-manifold is a Stein domain in the the complement of a certain contractible 2-complex.
متن کاملDelzant-type classification of near-symplectic toric 4-manifolds
Delzant’s theorem for symplectic toric manifolds says that there is a one-to-one correspondence between certain convex polytopes in Rn and symplectic toric 2n-manifolds, realized by the image of the moment map. I review proofs of this theorem and the convexity theorem of Atiyah-Guillemin-Sternberg on which it relies. Then, I describe Honda’s results on the local structure of near-symplectic 4-m...
متن کاملConvex Decomposition Theory 3
We use convex decomposition theory to (1) reprove the existence of a universally tight contact structure on every irreducible 3-manifold with nonempty boundary, and (2) prove that every toroidal 3-manifold carries infinitely many nonisotopic, nonisomorphic tight contact structures. It has been known for some time that there are deep connections between the theory of taut foliations and tight co...
متن کاملON LOCAL HUDETZ g-ENTROPY
In this paper, a local approach to the concept of Hudetz $g$-entropy is presented. The introduced concept is stated in terms of Hudetz $g$-entropy. This representation is based on the concept of $g$-ergodic decomposition which is a result of the Choquet's representation Theorem for compact convex metrizable subsets of locally convex spaces.
متن کاملAn Algorithm for the Euclidean Cell Decomposition of a Cusped Strictly Convex Projective Surface∗
Cooper and Long generalised Epstein and Penner’s Euclidean cell decomposition of cusped hyperbolic n–manifolds of finite volume to non-compact strictly convex projective n–manifolds of finite volume. We show that Weeks’ algorithm to compute this decomposition for a hyperbolic surface generalises to strictly convex projective surfaces.
متن کامل