On an Identity for the Chebychev Functional and Some Ramifications

نویسنده

  • P. CERONE
چکیده

An identity for the Chebychev functional is presented in which a Riemann-Stieltjes integral is involved. This allows bounds for the functional to be obtained for functions that are of bounded variation, Lipschitzian and monotone. Some applications are presented to produce bounds for moments of functions about a general point γ and for moment generating functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Some Generalisations of Steffensen’s Inequality and Related Results

Steffensen’s inequality is generalised to allow bounds involving any two subintervals rather than restricting them to include the end points. Further results are obtained involving an identity related to the generalised Chebychev functional in which the difference of the mean of the product of functions and the product of means of functions over different intervals is utilised. Bounds involving...

متن کامل

RBF-Chebychev direct method for solving variational problems

This paper establishes a direct method for solving variational problems via a set of Radial basis functions (RBFs) with Gauss-Chebyshev collocation centers. The method consist of reducing a variational problem into a mathematical programming problem. The authors use some optimization techniques to solve the reduced problem. Accuracy and stability of the multiquadric, Gaussian and inverse multiq...

متن کامل

Inequalities Related to the Chebychev Functional Involving Integrals over Different Intervals

A generalised Chebychev functional involving integral means of functions over different intervals is investigated. Bounds are obtained for which the functions are assumed to be of Hölder type. A weighted generalised Chebychev functional is also introduced and bounds are obtained in terms of weighted Grüss, Chebychev and Lupaş inequalities.

متن کامل

Thermal Analysis of Convective-Radiative Fin with Temperature-Dependent Thermal Conductivity Using Chebychev Spectral Collocation Method

In this paper, the Chebychev spectral collocation method is applied for the thermal analysis of convective-radiative straight fins with the temperature-dependent thermal conductivity. The developed heat transfer model was used to analyse the thermal performance, establish the optimum thermal design parameters, and also, investigate the effects of thermo-geometric parameters and thermal conducti...

متن کامل

On a Picone's identity for the $mathcal{A}_{p(x)}$-Laplacian and its applications

‎We present a Picone's identity for the‎ ‎$mathcal{A}_{p(x)}$-Laplacian‎, ‎which is an extension of the classic‎ ‎identity for the ordinary Laplace‎. ‎Also‎, ‎some applications of our‎ ‎results in Sobolev spaces with variable exponent are suggested.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002