Cilostazol Protects Endothelial Cells Against Lipopolysaccharide-Induced Apoptosis Through ERK1/2- and P38 MAPK-Dependent Pathways

نویسندگان

  • Jong-Hoon Lim
  • Jae-Suk Woo
  • Yung-Woo Shin
چکیده

BACKGROUND/AIMS We examined the effects of cilostazol on mitogen-activated protein kinase (MAPK) activity and its relationship with cilostazol-mediated protection against apoptosis in lipopolysaccharide (LPS)-treated endothelial cells. METHODS Human umbilical vein endothelial cells (HUVECs) were exposed to LPS and cilostazol with and without specific inhibitors of MAPKs; changes in MAPK activity in association with cell viability and apoptotic signaling were investigated. RESULTS Cilostazol protected HUVECs against LPS-induced apoptosis by suppressing the mitochondrial permeability transition, cytosolic release of cytochrome c, and subsequent activation of caspases, stimulating extracellullar signal-regulated kinase (ERK1/2) and p38 MAPK signaling, and increasing phosphorylated cAMP-responsive element-binding protein (CREB) and Bcl-2 expression, while suppressing Bax expression. These cilostazol-mediated cellular events were effectively blocked by MAPK/ERK kinase (MEK1/2) and p38 MAPK inhibitors. CONCLUSIONS Cilostazol protects HUVECs against LPS-induced apoptosis by suppressing mitochondria-dependent apoptotic signaling. Activation of ERK1/2 and p38 MAPKs, and subsequent stimulation of CREB phosphorylation and Bcl-2 expression, may be responsible for the cellular signaling mechanism of cilostazol-mediated protection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ferulic acid protects PC12 neurons against hypoxia by inhibiting the p-MAPKs and COX-2 pathways

Objective(s):Hypoxia induces cellular oxidative stress that is associated with neurodegenerative diseases. Here, the protective effects of ferulic acid (FA) on hypoxia-induced neurotoxicity in PC12 cells were evaluated. Materials and Methods:We investigated the effect of FA on PC12 cells subjected to hypoxia stress, in vitro. Results:FA increased cell viability, prevented membrane damage (LDH r...

متن کامل

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

Exogenous hydrogen sulfide protects H9c2 cardiac cells against high glucose-induced injury by inhibiting the activities of the p38 MAPK and ERK1/2 pathways.

Hyperglycemia is a risk factor for the development of diabetic cardiovascular complications, which are associated with the activation of the mitogen-activated protein kinase (MAPK) signaling pathway. In this study, we demonstrate the inhibitory effects of exogenous hydrogen sulfide (H₂S) on the activation of the MAPK pathway. The aim of the present study was to determine whether exogenous H₂S p...

متن کامل

Nox4 NADPH oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-α-induced apoptosis.

We investigated the role of reactive oxygen species (ROS) in promoting cell survival during oxidative stress induced by the inflammatory mediator tumor necrosis factor-α (TNF-α) in cerebral microvascular endothelial cells (CMVEC) from newborn piglets. Nox4 is the major isoform of NADPH oxidase responsible for TNF-α-induced oxidative stress and apoptosis in CMVEC. We present novel data that Nox4...

متن کامل

Bisdemethoxycurcumin protects endothelial cells against t-BHP-induced cell damage by regulating the phosphorylation level of ERK1/2 and Akt.

Curcuminoids are the major active components extracted from Curcuma longa and are well known for their antioxidant effects. Previous studies have reported that the antioxidant properties of curcuminoids are mainly attributed to their free radical scavenging abilities. However, whether there are other mechanisms besides the non-enzymatic process and how they are involved, still remains unknown. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2009