MAPSM: A Spatio-Temporal Algorithm for Merging Soil Moisture from Active and Passive Microwave Remote Sensing
نویسندگان
چکیده
Availability of soil moisture observations at a high spatial and temporal resolution is a prerequisite for various hydrological, agricultural and meteorological applications. In the current study, a novel algorithm for merging soil moisture from active microwave (SAR) and passive microwave is presented. The MAPSM algorithm—Merge Active and Passive microwave Soil Moisture—uses a spatio-temporal approach based on the concept of the Water Change Capacity (WCC) which represents the amplitude and direction of change in the soil moisture at the fine spatial resolution. The algorithm is applied and validated during a period of 3 years spanning from 2010 to 2013 over the Berambadi watershed which is located in a semi-arid tropical region in the Karnataka state of south India. Passive microwave products are provided from ESA Level 2 soil moisture products derived from Soil Moisture and Ocean Salinity (SMOS) satellite (3 days temporal resolution and 40 km nominal spatial resolution). Active microwave are based on soil moisture retrievals from 30 images of RADARSAT-2 data (24 days temporal resolution and 20 m spatial resolution). The results show that MAPSM is able to provide a good estimate of soil moisture at a spatial resolution of 500 m with an RMSE of 0.025 m3/m3 and 0.069 m3/m3 when comparing it to soil moisture from RADARSAT-2 and in-situ measurements, respectively. The use of Sentinel-1 and RISAT products in MAPSM algorithm is envisioned over other areas where high number of revisits is available. This will need an update of the algorithm to take into account the angle sampling and resolution of Sentinel-1 and RISAT data.
منابع مشابه
Sensitivity Analysis of b-factor in Microwave Emission Model for Soil Moisture Retrieval: A Case Study for SMAP Mission
Sensitivity analysis is critically needed to better understand the microwave emission model for soil moisture retrieval using passive microwave remote sensing data. The vegetation b-factor along with vegetation water content and surface characteristics has significant impact in model prediction. This study evaluates the sensitivity of the b-factor, which is function of vegetation type. The anal...
متن کاملSoil Moisture Retrieval from Active Spaceborne Microwave Observations: An Evaluation of Current Techniques
The importance of land surface-atmosphere interactions, principally the effects of soil moisture, on hydrological, meteorological, and ecological processes has gained widespread recognition over recent decades. Its high spatial and temporal variability however, makes soil moisture a difficult parameter to measure and monitor effectively using traditional methods. Microwave remote sensing techno...
متن کاملMicrowave Remote Sensing in Soil Quality Assessment
Information of spatial and temporal variations of soil quality (soil properties) is required for various purposes of sustainable agriculture development and management. Traditionally, soil quality characterization is done by in situ point soil sampling and subsequent laboratory analysis. Such methodology has limitation for assessing the spatial variability of soil quality. Various researchers i...
متن کاملEffect of Land Cover Heterogeneity on Soil Moisture Retrieval Using Active Microwave Remote Sensing Data
This study addresses the issue of the variability and heterogeneity problems that are expected from a sensor with a larger footprint having homogenous and heterogeneous sub-pixels. Improved understanding of spatial variability of soil surface characteristics such as land cover and vegetation in larger footprint are critical in remote sensing based soil moisture retrieval. This study analyzes th...
متن کاملSoil Moisture Remote Sensing: State-of-the-Science
This is an update to the special section “Remote Sensing for Vadose Zone Hydrology—A Synthesis from the Vantage Point” [Vadose Zone Journal 12(3)]. Satellites (e.g., Soil Moisture Active Passive [SMAP] and Soil Moisture and Ocean Salinity [SMOS]) using passive microwave techniques, in particular at L-band frequency, have shown good promise for global mapping of near-surface (0–5-cm) soil moistu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016