Phenotypic modulation of vascular smooth muscle cells induced by unsaturated lysophosphatidic acids.

نویسندگان

  • K Hayashi
  • M Takahashi
  • W Nishida
  • K Yoshida
  • Y Ohkawa
  • A Kitabatake
  • J Aoki
  • H Arai
  • K Sobue
چکیده

The phenotypic modulation of vascular smooth muscle cells (VSMCs) from the differentiated state to the dedifferentiated one is critically involved in the development and progression of atherosclerosis. Although many cytokines and growth factors have been reported as atherogenic factors, the critical pathogens for inducing atherosclerosis remain unknown, largely because proper examining systems of them have not been developed. We recently established primary culture systems for visceral SMCs and VSMCs in which both SMCs, when cultured on laminin with insulin-like growth factor-I, show a differentiated phenotype, as indicated by a spindle-like shape, ligand-induced contractility, and a high level of SMC differentiation marker gene expression. In this study, we searched for critical dedifferentiation factors for these SMCs using our culture system. We found that polar lipids extracted from human serum markedly induced VSMC dedifferentiation, and this activity was solely present in the lysophosphatidic acid (LPA) fraction. Among several LPA species detected in human serum lipids, unsaturated LPAs were identified as major contributors to the induction of VSMC dedifferentiation. Signaling and phenotype analyses revealed that unsaturated LPA-induced VSMC dedifferentiation is mediated through the coordinated activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase. Thus, this report demonstrates the first finding that unsaturated LPAs, but not saturated LPAs, specifically induce VSMC phenotypic modulation, suggesting that these molecules could function as atherogenic factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vascular remodeling induced by naturally occurring unsaturated lysophosphatidic acid in vivo.

BACKGROUND We previously identified unsaturated (16:1, 18:1, and 18:2) but not saturated (12:0, 14:0, 16:0, and 18:0) lysophosphatidic acids (LPAs) as potent factors for vascular smooth muscle cell (VSMC) dedifferentiation. Unsaturated LPAs strongly induce VSMC dedifferentiation via the coordinated activation of the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein k...

متن کامل

بررسی تاثیر اسیدالائیدیک بر بیان ژن استئونکتین در سلول‌های عضله‌ی صاف دیواره‌ی رگ‌ها

Background and Objective: Atheroma formation and progression of atherosclerosis are dependent on the expression of bone matrix proteins and regulatory factors such as osteonectin in the vessel walls. Studies have shown that consumption of Trans fatty acids increase risk of cardiovascular diseases. In this study, the effect of elaidic acid on osteonectin gene expression as one of the vascular ca...

متن کامل

Lipid phosphate phosphatase 3 negatively regulates smooth muscle cell phenotypic modulation to limit intimal hyperplasia.

OBJECTIVE The lipid phosphate phosphatase 3 (LPP3) degrades bioactive lysophospholipids, including lysophosphatidic acid and sphingosine-1-phosphate, and thereby terminates their signaling effects. Although emerging evidence links lysophosphatidic acid to atherosclerosis and vascular injury responses, little is known about the role of vascular LPP3. The goal of this study was to determine the r...

متن کامل

The role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells

Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...

متن کامل

Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 89 3  شماره 

صفحات  -

تاریخ انتشار 2001