Time-consistent estimators of 2D/3D motion of atmospheric layers from pressure images
نویسندگان
چکیده
In this paper, we face the challenging problem of estimation of time-consistent layer motion fields at various atmospheric depths. Based on a vertical decomposition of the atmosphere, we propose three different dense motion estimator relying on multi-layer dynamical models. In the first method, we propose a mass conservation model which constitutes the physical background of a multi-layer dense estimator. In the perspective of adapting motion analysis to atmospheric motion, we propose in this method a two-stage decomposition estimation scheme. The second method proposed in this paper relying on a 3D physical model for a stack of interacting layers allows us to recover a vertical motion information. In the last method, we use the exact shallow-water formulation of the Navier-Stokes equations to control the motion evolution across the sequence. This is done through a variational approach derived from data assimilation principle which combines the dynamical model and the pressure difference observations obtained from satellite images. The three methods use sparse pressure difference image observations derived from top of cloud images and classification maps. The proposed approaches are validated on synthetic example and applied to real world meteorological satellite image sequences. Key-words: Motion estimation; variational methods; optimal control; optical-flow; 3D atmospheric dynamics; physical-based methods Estimateurs temporellement cohérents de mouvements 2D/3D de couches atmospheriques partir d’images de pression Résumé : Ce papier aborde le problème ambitieux de l’estimation de champs de mouvements temporellement cohérents de couches atmosphériques à différentes altitudes. Basé sur la décomposition verticale de l’atmosphère, nous proposons trois différents estimateurs denses de mouvement en s’appuyant sur un modèle dynamique stratifié. Pour la première méthode, nous proposons un modèle de conservation de la masse qui constitue la base physique d’un estimateur dense stratifié. Dans l’optique d’adapter l’analyse du mouvement au flot atmosphérique, nous proposons une décomposition en deux étapes de l’estimation de mouvement. La deuxième méthode proposée dans ce papier permet de recouvrer la composante verticale du mouvement en s’appuyant sur la physique tri-dimensionnelle d’un empilement de couches interconnectées. Dans la dernière méthode, on utilise la formulation exact du modèle des eaux peu profondes de Saint Venant pour controler l’évolution des mouvements atmosphériques au cours de la séquence. Ce contrôle est effectué par une approche variationnelle dérivée du principe de l’assimilation de données. Celui-ci permet de combiner la dynamique d’un modèle avec des observations issues de l’imagery satellitaire. Les trois méthodes utilisent des observations éparses de différence de pression qui sont dérivées des images satellitaires de pression au sommet des nuages et des cartes de classifications associées. Les approches sont validées sur des exemples synthétiques et appliquées sur des séquences réelles d’images de satellites météorologiques. Mots-clés : Estimation de mouvements; méthodes variationelles; contrôle optimal; flot-optique; dynamique atmospherique 3D; méthodes basées sur la physique Time-consistent estimators of 2D/3D motion of atmospheric layers from pressure images 3
منابع مشابه
Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملImage Assimilation for Motion Estimation of Atmospheric Layers with Shallow-Water Model
The complexity of dynamical laws governing 3D atmospheric flows associated to incomplete and noisy observations makes very difficult the recovery of atmospheric dynamics from satellite images sequences. In this paper, we face the challenging problem of joint estimation of timeconsistent horizontal motion fields and pressure maps at various atmospheric depths. Based on a vertical decomposition o...
متن کاملMotion Estimation and Compensation in Medical Imaging
This dissertation presents a framework for estimation of motion fields in 2D images, 3D volumes and multi-dimensional signal registration. The primary application is motion compensation for sequences of medical images and volumes with contrast agents. The framework implies motion estimation in two steps where the intermediate result is constraints on the local motion vectors. One algorithm gene...
متن کاملReconstruction and visualization of 3D wind fields from satellite image sequences
In this paper, we address the problem of estimating and visualizing 3D atmospheric motion using top of cloud pressure image sequences. The reconstruction of 3D fluid motion from a monocular sequence of image observations is a very challenging problem for which no solution exists in the literature. Based on a physically sound vertical decomposition of the atmosphere into layers of different pres...
متن کاملWind Tunnel Investigation of Pressure Distribution and Transition Position of a Swept 3D Wing
Extensive wind tunnel tests are conducted to evaluate surface pressure distribution of a semi span swept wing. The wing section has a laminar flow airfoil similar to NACA 6-series airfoils. The investigations are conducted at various speeds and angles of attack. Surface pressure distribution over the wing upper surface is measured for both chordwise and spanwise sections. Statistical analyses a...
متن کامل