Early Postoperative Nociceptive Threshold and Production of Brain-Derived Neurotrophic Factor Induced by Plantar Incision Are Not Influenced with Minocycline in a Rat: Role of Spinal Microglia.
نویسندگان
چکیده
BACKGROUND Brain-derived neurotrophic factor (BDNF) from spinal microglia is crucial for aberrant nociceptive signaling in several pathological pain conditions, including postoperative pain. We assess the contribution of spinal microglial activation and associated BDNF overexpression to the early post-incisional nociceptive threshold. METHODS Male Sprague-Dawley rats were implanted with an intrathecal catheter. A postoperative pain model was established by plantar incision. Thermal and mechanical nociceptive responses were assessed by infrared radiant heat and von Frey filaments before and after plantar incision. Rats were injected intrathecally the microglial activation inhibitor minocycline before incision, 24 h after incision, or both. Other groups were subjected to the same treatments and the L4-L5 spinal cord segment removed for immunohistochemical analysis of microglia activation and BNDF expression. RESULTS Plantar incision reduced both thermal latency and mechanical threshold, indicating thermal hypersensitivity and mechanical allodynia. Minocycline temporally reduced thermal withdrawal latency but had no effect on mechanical withdrawal threshold, spinal microglial activity, or dorsal horn BDNF overexpression during the early post-incision period. CONCLUSION These results suggest that spinal microglia does not contribute substantially to post-incisional nociceptive threshold. The BDNF overexpression response that may contribute to postoperative hyperalgesia and allodynia is likely derived from other sources.
منابع مشابه
D2-like receptors in the descending dopaminergic pathway are not involved in the decreased postoperative nociceptive threshold induced by plantar incision in adult rats
BACKGROUND Approximately half of all patients who undergo surgery develop postoperative pain, the mechanisms of which are not well understood by anesthesiologists. D2-like receptors in the descending dopaminergic pathway play an important role in regulation of pain transmission in the spinal cord. Impairment of inhibitory neurons in the spinal cord is suggested as part of the mechanism for neur...
متن کاملMinocycline Enhance Restorative Ability of Olfactory Ensheathing Cells by Upregulation of BDNF and GDNF Expression After Spinal Cord Injury
Purpose: Spinal cord injury is a global public health issue that results in extensive neuronal degeneration, axonal and myelin loss and severe functional deficits. Neurotrophic factors are potential treatment for reducing secondary damage, promoting axon growth, and are responsible for inducing myelination after injury. Olfactory ensheathing cells (OECs) and minocycline have been shown to promo...
متن کاملModulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells
Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. Thi...
متن کاملPain-related mediators underlie incision-induced mechanical nociception in the dorsal root ganglia
Approximately 50-70% of patients experience incision-induced mechanical nociception after surgery. However, the mechanism underlying incision-induced mechanical nociception is still unclear. Interleukin-10 and brain-derived neurotrophic factor are important pain mediators, but whether interleukin-10 and brain-derived neurotrophic factor are involved in incision-induced mechanical nociception re...
متن کاملBrain derived neurotrophic factor (BDNF) contributes to the pain hypersensitivity following surgical incision in the rats
BACKGROUND The pathogenic role of brain derived neurotrophic factor (BDNF) in the incisional pain is poorly understood. The present study explores the role of the BDNF in the incision-induced pain hypersensitivity. METHODS A longitudinal incision was made in one plantar hind paw of isoflurane-anesthetized rats. Dorsal root ganglias (DRG) and spinal cords were removed at various postoperative ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuro-Signals
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2016