Phylogenetic relationships and reticulation among Asian Elymus (Poaceae) allotetraploids: analyses of three nuclear gene trees.
نویسندگان
چکیده
This phylogenetic study focuses on a subset of the species in Elymus-specifically, the endemic Asian tetraploids presumed to combine the St genome from Pseudoroegneria with the Y genome from an unknown donor. The primary goals were to (1) determine whether the St and Y genomes are derived from phylogenetically distinct donors; (2) identify the closest relative, and potentially the likely donor, of the Y genome; and (3) interpret variation among StStYY species in terms of multiple origins and/or introgression. The goals were addressed using phylogenetic analyses of sequences from three low-copy nuclear genes: phosphoenolpyruvate carboxylase, beta-amylase, and granule-bound starch synthase I. Data sets include 16 StStYY individuals representing nine species, along with a broad sample of representatives from most of the monogenomic (i.e., non-allopolyploid) genera in the tribe. To briefly summarize the results: (1) the data clearly support an allopolyploid origin for the Asian tetraploids, involving two distinct donors; (2) the Y genome was contributed by a single donor, or multiple closely-related donors; (3) the phylogenetic position of the ElymusY genome varies among the three trees and its position is not strongly supported, so the identity of the donor remains a mystery; and (4) conflicts among the gene trees with regard to the St-genome sequences suggest introgression involving both Elymus and Pseudoroegneria.
منابع مشابه
Phylogeny of a Genomically Diverse Group of Elymus (Poaceae) Allopolyploids Reveals Multiple Levels of Reticulation
The grass tribe Triticeae (=Hordeeae) comprises only about 300 species, but it is well known for the economically important crop plants wheat, barley, and rye. The group is also recognized as a fascinating example of evolutionary complexity, with a history shaped by numerous events of auto- and allopolyploidy and apparent introgression involving diploids and polyploids. The genus Elymus compris...
متن کاملReticulate Evolutionary History of a Complex Group of Grasses: Phylogeny of Elymus StStHH Allotetraploids Based on Three Nuclear Genes
BACKGROUND Elymus (Poaceae) is a large genus of polyploid species in the wheat tribe Triticeae. It is polyphyletic, exhibiting many distinct allopolyploid genome combinations, and its history might be further complicated by introgression and lineage sorting. We focus on a subset of Elymus species with a tetraploid genome complement derived from Pseudoroegneria (genome St) and Hordeum (H). We co...
متن کاملAllohexaploidy, introgression, and the complex phylogenetic history of Elymus repens (Poaceae).
The phylogenetic position of hexaploid Elymus repens within the tribe Triticeae (Poaceae) was examined using cloned sequences from the low-copy nuclear genes encoding phosphoenolpyruvate carboxylase (pepC) and beta-amylase. A previous analysis of E. repens using data from the nuclear granule-bound starch synthase I (GBSSI) gene had yielded five phylogenetically distinct gene copies, two more th...
متن کاملPhylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets.
Although the monogenomic genera of the Triticeae have been analyzed in numerous biosystematic studies, the allopolyploid genera have not been as extensively studied within a phylogenetic framework. We focus on North American species of Elymus, which, under the current genomic system of classification, are almost all allotetraploid, combining the St genome of Pseudoroegneria with the H genome of...
متن کاملPhylogenetic analysis of Elymus (Poaceae) in western China.
Elymus L. is often planted in temperate and subtropical regions as forage. Species in the genus have 5 allopolyploid genomes that are found in the grass tribe Triticeae. To determine the phylogenetic relationships in Elymus species from western China, we estimated phylogenetic trees using sequences from the nuclear ribosomal internal transcribed spacer and non-coding chloroplast DNA sequences f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular phylogenetics and evolution
دوره 54 1 شماره
صفحات -
تاریخ انتشار 2010