Unsupervised Aspect Term Extraction with B-LSTM & CRF using Automatically Labelled Datasets
نویسندگان
چکیده
Aspect Term Extraction (ATE) identifies opinionated aspect terms in texts and is one of the tasks in the SemEval Aspect Based Sentiment Analysis (ABSA) contest. The small amount of available datasets for supervised ATE and the costly human annotation for aspect term labelling give rise to the need for unsupervised ATE. In this paper, we introduce an architecture that achieves top-ranking performance for supervised ATE. Moreover, it can be used efficiently as feature extractor and classifier for unsupervised ATE. Our second contribution is a method to automatically construct datasets for ATE. We train a classifier on our automatically labelled datasets and evaluate it on the human annotated SemEval ABSA test sets. Compared to a strong rule-based baseline, we obtain a dramatically higher F-score and attain precision values above 80%. Our unsupervised method beats the supervised ABSA baseline from SemEval, while preserving high precision scores.
منابع مشابه
Unsupervised Word and Dependency Path Embeddings for Aspect Term Extraction
In this paper, we develop a novel approach to aspect term extraction based on unsupervised learning of distributed representations of words and dependency paths. The basic idea is to connect two words (w1 and w2) with the dependency path (r) between them in the embedding space. Specifically, our method optimizes the objective w1 + r ≈ w2 in the low-dimensional space, where the multihop dependen...
متن کاملFeature Selection Using Multi-objective Optimization for Aspect Based Sentiment Analysis
In this paper, we propose a system for aspect-based sentiment analysis (ABSA) by incorporating the concepts of multi-objective optimization (MOO), distributional thesaurus (DT) and unsupervised lexical induction. The task can be thought of as a sequence of processes such as aspect term extraction, opinion target expression identification and sentiment classification. We use MOO for selecting th...
متن کاملAspect Term Extraction for Sentiment Analysis: New Datasets, New Evaluation Measures and an Improved Unsupervised Method
Given a set of texts discussing a particular entity (e.g., customer reviews of a smartphone), aspect based sentiment analysis (ABSA) identifies prominent aspects of the entity (e.g., battery, screen) and an average sentiment score per aspect. We focus on aspect term extraction (ATE), one of the core processing stages of ABSA that extracts terms naming aspects. We make publicly available three n...
متن کاملCombining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملPAYMA: A Tagged Corpus of Persian Named Entities
The goal in the named entity recognition task is to classify proper nouns of a piece of text into classes such as person, location, and organization. Named entity recognition is an important preprocessing step in many natural language processing tasks such as question-answering and summarization. Although many research studies have been conducted in this area in English and the state-of-the-art...
متن کامل