Variation of Routine Soil Analysis When Compared with Hyperspectral Narrow Band Sensing Method

نویسندگان

  • José A. M. Demattê
  • Peterson R. Fiorio
  • Suzana R. Araújo
چکیده

The objectives of this research were to: (i) develop hyperspectral narrow-band models to determine soil variables such as organic matter content (OM), sum of cations (SC = Ca + Mg + K), aluminum saturation (m%), cations saturation (V%), cations exchangeable capacity (CEC), silt, sand and clay content using visible-near infrared (Vis-NIR) diffuse reflectance spectra; (ii) compare the variations of the chemical and the spectroradiometric soil analysis (Vis-NIR). The study area is located in São Paulo State, Brazil. The soils were sampled over an area of 473 ha divided into grids (100 × 100 m) with a total of 948 soil samples georeferenced. The laboratory RS data were obtained using an IRIS (Infrared Intelligent Spectroradiometer) sensor (400–2,500 nm) with a 2-nm spectral resolution between 450 and 1,000 nm and 4-nm between 1,000 and 2,500 nm. Satellite reflectance values were sampled from corrected Landsat Thematic Mapper (TM) images. Each pixel in the image was evaluated as its vegetation index, color compositions and soil line concepts regarding certain locations of the field in the image. Chemical and physical analysis (organic matter content, sand, silt, clay, sum of cations, cations saturation, aluminum saturation and cations exchange capacity) were performed in the laboratory. Statistical analysis and multiple regression equations for soil attribute predictions using radiometric data were developed. Laboratory data used 22 bands and 13 ―Reflectance Inflexion Differences, RID‖ from different wavelength intervals of the optical spectrum. However, for TM-Landsat six bands were used in analysis (1, 2, 3, 4, 5, and 7). OPEN ACCESS Remote Sensing 2010, 2 1999 Estimations of some tropical soil attributes were possible using laboratory spectral analysis. Laboratory spectral reflectance (SR) presented high correlations with traditional laboratory analyses for the soil attributes such as clay (R 2 = 0.84, RMSE = 3.75) and sand (R 2 = 0.85, RMSE = 3.74). The most sensitive narrow-bands in modeling (using 474 observations) these attributes were B8 (1,350–1,417 nm), B10 (1,417–1,449 nm), B11 (1,449–1,793 nm), B15 (1,927–2,102 nm), B16 (2,101–2,139 nm), and B17 (2,139–2,206 nm); B7 (975–1,350 nm), B10, B11, B16, B19 (2,206–2,258 nm) and B21 (2,258–2,389 nm) for clay and sand, respectively. The bands selected to model sand and clay, by orbital data, were 3, 5 and 7 of TM-Landsat-5 and 2, 5 and 7 sand and clay, respectively. The use of soil analysis methodology by ground remote sensing constitutes an alternative to traditional routine laboratory analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Band Selection Method for Retrieving Soil Lead Content with Hyperspectral Remote Sensing Data

Hyperspectral data offers a powerful tool for predicting soil heavy metal contamination due to its high spectral resolution and many continuous bands. However, band selection is the prerequisite to accurately invert and predict soil heavy metal concentration by hyperspectral data. In this paper, 181 soil samples were collected from the suburb of Nanjing City, and their reflectance spectra and s...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

Applying linear spectral unmixing to airborne hyperspectral imagery for mapping yield variability in grain sorghum and cotton fields

This study examined linear spectral unmixing techniques for mapping the variation in crop yield for precision agriculture. Both unconstrained and constrained linear spectral unmixing models were applied to airborne hyperspectral imagery collected from a grain sorghum field and a cotton field. A pair of crop plant and soil spectra derived from each image was used as endmember spectra to generate...

متن کامل

A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery

Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2010