Clustering von Anwendungslandschaften mit Self-Organizing Maps (SOMs)
نویسنده
چکیده
Es besteht ein hohes Interesse an Techniken zur Analyse von Anwendungslandschaften. Im Sinne eines Portfoliomanagements sind für diese Aufgabe häufig mehrere Dimensionen relevant. Werden Kennzahlen verwendet, entstehen multidimensionale Datensätze, die sich bei einer sehr großen Anzahl an Elementen mittels konventioneller Techniken nur noch schwer erschließen lassen. Die SelfOrganizing Map (SOM) ist ein vielversprechender Ansatz aus dem Bereich der Clustering-Methoden mittels künstlicher neuronaler Netzwerke. In dieser Arbeit wird die SOM als Steuerungsinstrument für das IT-Management verwendet. Anhand von Kennzahlen wird ein Clustering ähnlicher Anwendungen in einem Portfolio durchgeführt. Es sollen so Zeit und Aufwand für den Analysten eingespart werden. Die Anwendungen im Portfolio lassen sich anhand ihrer ClusterZugehörigkeit gezielt vergleichen. Es wird gezeigt, welche Erfahrungen gewonnen wurden und welche Implikationen sich für Forschung und Praxis ergeben.
منابع مشابه
Steel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملClustering Using Adaptive Self-organizing Maps (ASOM) and Applications
This paper presents an innovative, adaptive variant of Kohonen’s selforganizing maps called ASOM, which is an unsupervised clustering method that adaptively decides on the best architecture for the self-organizing map. Like the traditional SOMs, this clustering technique also provides useful information about the relationship between the resulting clusters. Applications of the resulting softwar...
متن کاملCo-clustering and visualization of gene expression data and gene ontology terms for Saccharomyces cerevisiae using self-organizing maps
We propose a novel co-clustering algorithm that is based on self-organizing maps (SOMs). The method is applied to group yeast (Saccharomyces cerevisiae) genes according to both expression profiles and Gene Ontology (GO) annotations. The combination of multiple databases is supposed to provide a better biological definition and separation of gene clusters. We compare different levels of genome-w...
متن کاملUnsupervised speaker recognition based on competition between self-organizing maps
We present a method for clustering the speakers from unlabeled and unsegmented conversation (with known number of speakers), when no a priori knowledge about the identity of the participants is given. Each speaker was modeled by a self-organizing map (SOM). The SOMs were randomly initiated. An iterative algorithm allows the data move from one model to another and adjust the SOMs. The restrictio...
متن کاملThe self-organizing map in synoptic climatological research
Self-organizing maps (SOMs) are a relative newcomer to synoptic climatology; the method itself has only been utilized in the field for around a decade. In this article, we review the major developments and climatological applications of SOMs in the literature. The SOM can be used in synoptic climatological analysis in a manner similar tomostother clustering methods.However, as the results froma...
متن کامل