A peripheral mechanism for behavioral adaptation to specific "bitter" taste stimuli in an insect.
نویسندگان
چکیده
Animals have evolved several chemosensory systems for detecting potentially dangerous foods in the environment. Activation of specific sensory cells within these chemosensory systems usually elicits an aversive behavioral response, leading to avoidance of the noxious foods. Although this aversive behavioral response can be adaptive, there are many instances in which it generates "false alarms," causing animals to reject harmless foods. To minimize the number of false alarms, animals have evolved a variety of physiological mechanisms for selectively adapting their aversive behavioral response to harmless noxious compounds. We examined the mechanisms underlying exposure-induced adaptation to specific "bitter" compounds in Manduca sexta caterpillars. M. sexta exhibits an aversive behavioral response to many plant-derived compounds that taste bitter to humans, including caffeine and aristolochic acid. This aversive behavioral response is mediated by three pairs of bitter-sensitive taste cells: one responds vigorously to aristolochic acid alone, and the other two respond vigorously to both caffeine and aristolochic acid. We found that 24 hr of exposure to a caffeinated diet desensitized all of the caffeine-responsive taste cells to caffeine but not to aristolochic acid. In addition, we found that dietary exposure to caffeine adapted the aversive behavioral response of the caterpillar to caffeine, but not to aristolochic acid. We propose that the adapted aversive response to caffeine was mediated directly by the desensitized taste cells and that the adapted aversive response did not generalize to aristolochic acid because the signaling pathway for this compound was insulated from that for caffeine.
منابع مشابه
Contribution of different taste cells and signaling pathways to the discrimination of "bitter" taste stimuli by an insect.
Animals can discriminate among many different types of foods. This discrimination process involves multiple sensory systems, but the sense of taste is known to play a central role. We asked how the taste system contributes to the discrimination of different "bitter" taste stimuli in Manduca sexta caterpillars. This insect has approximately eight bilateral pairs of taste cells that respond selec...
متن کاملTemporal coding mediates discrimination of "bitter" taste stimuli by an insect.
The mechanisms that mediate discriminative taste processing in insects are poorly understood. We asked whether temporal patterns of discharge from the peripheral taste system of an insect (Manduca sexta caterpillars; Sphingidae) contribute to the discrimination of three "bitter" taste stimuli: salicin, caffeine, and aristolochic acid. The gustatory response to these stimuli is mediated exclusiv...
متن کاملRole of the G-Protein Subunit -Gustducin in Taste Cell Responses to Bitter Stimuli
Many bitter stimuli are believed to bind to specific G-protein-coupled membrane receptors on taste cells. Despite the compelling evidence for its pivotal role in bitter taste sensation, a direct involvement of the G-protein subunit -gustducin in bitter taste transduction in taste cells has not been demonstrated in situ at the cellular level. We recorded activation of taste cells by bitter stimu...
متن کاملAn Inhibitory Sex Pheromone Tastes Bitter for Drosophila Males
Sexual behavior requires animals to distinguish between the sexes and to respond appropriately to each of them. In Drosophila melanogaster, as in many insects, cuticular hydrocarbons are thought to be involved in sex recognition and in mating behavior, but there is no direct neuronal evidence of their pheromonal effect. Using behavioral and electrophysiological measures of responses to natural ...
متن کاملRat taste behaviors for bitter and sour aversive stimuli
The gustatory and olfactory systems are the only two systems in which stimuli act directly on the receptor. There are five taste categories which have been identified as gustatory stimuli: sweet, salty, bitter, sour, and umami (MSG). Bitter and sour are known as aversive stimuli and help mammals avoid toxic and spoiled foods. Although both are similar in that they are aversive, they work throug...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 21 10 شماره
صفحات -
تاریخ انتشار 2001