An Optimized Takagi-Sugeno Fuzzy-Based Satellite Attitude Controller by Two State Actuator

نویسنده

  • Sobutyeh Rezanezhad
چکیده

Received Jul 5, 2014 Revised Nov 11, 2014 Accepted Nov 22, 2014 In this paper, an algorithm was presented to control the satellite attitude in orbit in order to reduce the fuel consumption and increase longevity of satellite. Because of proper operation and simplicity, fuzzy controller was used to save fuel and analyze the uncertainty and nonlinearities of satellite control system. The presented control algorithm has a high level of reliability facing unwanted disturbances considering the satellite limitations. The controller was designed based on Takagi-Sugeno satellite dynamic model, a powerful tool for modeling nonlinear systems. Inherent chattering related to on-off controller produces limit cycles with low frequency amplitude. This increases the system error and maximizes the satellite fuel consumption. Particle Swarm Optimization (PSO) algorithm was used to minimize the system error. The satellite simulation results show the high performance of fuzzy on-off controller with the presented algorithm. Keyword:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models

Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...

متن کامل

Takagi-Sugeno Fuzzy Model-Based Attitude Control of Spacecraft with Partially-Filled Fuel Tank

This paper presents a Takagi-Sugeno fuzzy model-based controller which stabilizes the attitude of spacecraft with a partially-filled fuel tank. First, the nonlinear equations of motion of spacecraft containing a liquid fuel store is presented briefly. Then, the fuzzy modeling and the parallel distributed compensation control technique are applied. The proposed fuzzy controller is a nonlinear co...

متن کامل

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

An efficient method to control the amplitude of the limit cycle in satellite attitude control system

In this paper, an efficient method is presented to control the attitude of a satellite with ON-OFF actuator. The main objective of this novel method is to control the amplitude of the limit cycle which commonly appears in the steady state of such systems; and at the same time by consideration of real actuator constraints, reduce the fuel consumption of system. The Proposed method is a combinati...

متن کامل

State Feedback Controller Design via Takagi- Sugeno Fuzzy Model: LMI Approach

In this paper, we introduce a robust state feedback controller design using Linear Matrix Inequalities (LMIs) and guaranteed cost approach for Takagi-Sugeno fuzzy systems. The purpose on this work is to establish a systematic method to design controllers for a class of uncertain linear and non linear systems. Our approach utilizes a certain type of fuzzy systems that are based on Takagi-Sugeno ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016