On special partitions of Dedekind- and Russell-sets
نویسندگان
چکیده
A Russell set is a set which can be written as the union of a countable pairwise disjoint set of pairs no infinite subset of which has a choice function and a Russell cardinal is the cardinal number of a Russell set. We show that if a Russell cardinal a has a ternary partition (see Section 1, Definition 2) then the Russell cardinal a + 2 fails to have such a partition. In fact, we prove that if a ZF-model contains a Russell set, then it contains Russell sets with ternary partitions as well as Russell sets without ternary partitions. We then consider generalizations of this result.
منابع مشابه
Dedekind sums : a combinatorial - geometric viewpoint Matthias Beck and Sinai Robins
The literature on Dedekind sums is vast. In this expository paper we show that there is a common thread to many generalizations of Dedekind sums, namely through the study of lattice point enumeration of rational poly-topes. In particular, there are some natural finite Fourier series which we call Fourier-Dedekind sums, and which form the building blocks of the number of partitions of an integer...
متن کاملAn Introduction to Naive Set Theory and The Concept of Innity: Guided by an Essay of Richard Dedekind
During the last 100 to 150 years, it has become common practice for mathematicians to consider collecting numbers (and/or other objects) into a single conglomerate. This point of view in fact permeates much of higher level mathematics. As such, students of mathematics should have a rm grip on the underlying ideas of how these conglomerates behave. These conglomerates are typically called sets ...
متن کاملϕ-ALMOST DEDEKIND RINGS AND $\Phi$-ALMOST DEDEKIND MODULES
The purpose of this paper is to introduce some new classes of rings and modules that are closely related to the classes of almost Dedekind domains and almost Dedekind modules. We introduce the concepts of $\phi$-almost Dedekind rings and $\Phi$-almost Dedekind modules and study some properties of this classes. In this paper we get some equivalent conditions for $\phi$-almost Dedekind rings and ...
متن کاملOn transitive soft sets over semihypergroups
The aim of this paper is to initiate and investigate new soft sets over semihypergroups, named special soft sets and transitive soft sets and denoted by $S_{H}$ and $T_{H},$ respectively. It is shown that $T_{H}=S_{H}$ if and only if $beta=beta^{*}.$ We also introduce the derived semihypergroup from a special soft set and study some properties of this class of semihypergroups.
متن کاملA hybrid mean value involving a new Gauss sums and Dedekind sums
In this paper, we introduce a new sum analogous to Gauss sum, then we use the properties of the classical Gauss sums and analytic method to study the hybrid mean value problem involving this new sums and Dedekind sums, and give an interesting identity for it.
متن کامل