Strong Convergence Theorems for Nonexpansive Mappings and Inverse-strongly-monotone Mappings in a Banach Space

نویسندگان

  • Ying Liu
  • YING LIU
چکیده

In this paper, we introduce a new iterative sequence for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality for an inversestrongly-monotone mapping in a Banach space. Then we show that the sequence converges strongly to a common element of two sets. Using this result, we consider the problem of finding a common element of the set of fixed points of a nonexpansive mapping and the set of zeros of an inverse-strongly-monotone mapping, the fixed point problem and the classical variational inequality problem. Our results improve and extend the corresponding results announced by many others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence theorems of implicit iterates with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

In this paper, we prove that an implicit iterative process with er-rors converges strongly to a common xed point for a nite family of generalizedasymptotically quasi-nonexpansive mappings on unbounded sets in a uniformlyconvex Banach space. Our results unify, improve and generalize the correspond-ing results of Ud-din and Khan [4], Sun [21], Wittman [23], Xu and Ori [26] andmany others.

متن کامل

Convergence theorems of multi-step iterative algorithm with errors for generalized asymptotically quasi-nonexpansive mappings in Banach spaces

The purpose of this paper is to study and give the necessary andsufficient condition of strong convergence of the multi-step iterative algorithmwith errors for a finite family of generalized asymptotically quasi-nonexpansivemappings to converge to common fixed points in Banach spaces. Our resultsextend and improve some recent results in the literature (see, e.g. [2, 3, 5, 6, 7, 8,11, 14, 19]).

متن کامل

Strong Convergence Theorems for Variational Inequality Problems and a Countable Family of Total Quasi-φ-Asymptotically Nonexpansive Nonself Mappings

In this paper, we introduce an iterative process which converges strongly to a common element of solutions of variational inequality problems for γ-inverse strongly monotone mappings and common fixed points of a countable family of total quasi-φ-asymptotically nonexpansive nonself mappings, and hence obtain related convergence theorems in Banach spaces. Mathematics Subject Classification: 47H09...

متن کامل

Generalized α-nonexpansive mappings in Banach spaces

We consider a new type of monotone nonexpansive mappings in an ordered Banach space X with partial order . This new class of nonlinear mappings properly contains nonexpansive, firmly-nonexpansive and Suzuki-type generalized nonexpansive mappings and partially extends α-nonexpansive mappings. We obtain some existence theorems and weak and strong convergence theorems for the Mann iteration. Some ...

متن کامل

Strong Convergence of Monotone Hybrid Method for Maximal Monotone Operators and Hemirelatively Nonexpansive Mappings

We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Ban...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010