Phase transitions towards criticality in a neural system with adaptive interactions.
نویسندگان
چکیده
We analytically describe a transition scenario to self-organized criticality (SOC) that is new for physics as well as neuroscience; it combines the criticality of first and second-order phase transitions with a SOC phase. We consider a network of pulse-coupled neurons interacting via dynamical synapses, which exhibit depression and facilitation as found in experiments. We analytically show the coexistence of a SOC phase and a subcritical phase connected by a cusp bifurcation. Switching between the two phases can be triggered by varying the intensity of noisy inputs.
منابع مشابه
Adaptive self-organization in a realistic neural network model.
Information processing in complex systems is often found to be maximally efficient close to critical states associated with phase transitions. It is therefore conceivable that also neural information processing operates close to criticality. This is further supported by the observation of power-law distributions, which are a hallmark of phase transitions. An important open question is how neura...
متن کاملAdaptation to criticality through organizational invariance in embodied agents
Many biological and cognitive systems do not operate deep within one or other regime of activity. Instead, they are poised at critical points located at transitions of their parameter space. The pervasiveness of criticality suggests that there may be general principles inducing this behaviour, yet there is no well-founded theory for understanding how criticality is found at a wide range of leve...
متن کاملCriticality of avalanche dynamics in adaptive recurrent networks
In many studies of self-organized criticality (SOC), branching processes were used to model the dynamics of the activity of the system during avalanches. This mathematical simplification was also adopted when investigating systems with a complicated connection topology including recurrent and subthreshold interactions. However, none of these studies really analyzed whether this convenient appro...
متن کاملNeuropercolation: A Random Cellular Automata Approach to Spatio-temporal Neurodynamics
We outline the basic principles of neuropercolation, a generalized percolation model motivated by the dynamical properties of the neuropil, the densely interconnected neural tissue structure in the cortex. We apply the mathematical theory of percolation in lattices to analyze chaotic dynamical memories and their related phase transitions. This approach has several advantages, including the natu...
متن کاملMetastability, criticality and phase transitions in brain and its models
This survey of experimental findings and theoretical insights of the past 25 years places the brain firmly into the conceptual framework of nonlinear dynamics, operating at the brink of criticality, which is achieved and maintained by self-organization. It is here the basis for proposing that the application of the twin concepts of scaling and universality of the theory of non-equilibrium phase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 102 11 شماره
صفحات -
تاریخ انتشار 2009