Sub-Cellular Localisation Studies May Spuriously Detect the Yes-Associated Protein, YAP, in Nucleoli Leading to Potentially Invalid Conclusions of Its Function
نویسندگان
چکیده
The Yes-associated protein (YAP) is a potent transcriptional co-activator that functions as a nuclear effector of the Hippo signaling pathway. YAP is oncogenic and its activity is linked to its cellular abundance and nuclear localisation. Activation of the Hippo pathway restricts YAP nuclear entry via its phosphorylation by Lats kinases and consequent cytoplasmic retention bound to 14-3-3 proteins. We examined YAP expression in liver progenitor cells (LPCs) and surprisingly found that transformed LPCs did not show an increase in YAP abundance compared to the non-transformed LPCs from which they were derived. We then sought to ascertain whether nuclear YAP was more abundant in transformed LPCs. We used an antibody that we confirmed was specific for YAP by immunoblotting to determine YAP's sub-cellular localisation by immunofluorescence. This antibody showed diffuse staining for YAP within the cytosol and nuclei, but, noticeably, it showed intense staining of the nucleoli of LPCs. This staining was non-specific, as shRNA treatment of cells abolished YAP expression to undetectable levels by Western blot yet the nucleolar staining remained. Similar spurious YAP nucleolar staining was also seen in mouse embryonic fibroblasts and mouse liver tissue, indicating that this antibody is unsuitable for immunological applications to determine YAP sub-cellular localisation in mouse cells or tissues. Interestingly nucleolar staining was not evident in D645 cells suggesting the antibody may be suitable for use in human cells. Given the large body of published work on YAP in recent years, many of which utilise this antibody, this study raises concerns regarding its use for determining sub-cellular localisation. From a broader perspective, it serves as a timely reminder of the need to perform appropriate controls to ensure the validity of published data.
منابع مشابه
Overexpression of Yes‐associated protein and its association with clinicopathological features of hepatocellular carcinoma: A meta‐analysis
BACKGROUND Yes-associated protein (YAP) overexpression is reported to be associated with risk of hepatocellular carcinoma (HCC) but current studies have not explored the relationship between YAP expression with HCC clinicopathological features. METHODS To assess these associations, a meta-analysis was performed which included four eligible studies including 391 HCC cases and 334 controls. The...
متن کاملYap regulates gastric cancer survival and migration via SIRT1/Mfn2/mitophagy
Gastric cancer is the fifth most common cancer worldwide and Hippo-Yap is the novel signaling pathway which plays an important role in gastric cancer tumor development and progression. However, little insight is available to date regarding the specific role of Yes-associated protein (Yap) in gastric cancer. In the present study, we identified the mechanism through which Yap sustains gastric can...
متن کاملCardiac-specific YAP activation improves cardiac function and survival in an experimental murine MI model.
RATIONALE Yes-associated protein (YAP), the terminal effector of the Hippo signaling pathway, is crucial for regulating embryonic cardiomyocyte proliferation. OBJECTIVE We hypothesized that YAP activation after myocardial infarction (MI) would preserve cardiac function and improve survival. METHODS AND RESULTS We used a cardiac-specific, inducible expression system to activate YAP in adult ...
متن کاملExpression of MicroRNA-29a Regulated by Yes-Associated Protein Modulates the Neurite Outgrowth in N2a Cells
Yes-associated protein (YAP) is proved to increase miR-29a in the present study, but the relevant molecular mechanism is not clear. Also, growing evidence indicates that the high-level miR-29a promotes the neurite outgrowth by decreasing PTEN (phosphatase and tensin homologue deleted on chromosome 10). Results show that the expression of miR-29a increases but the PTEN decreases during transfect...
متن کاملA Novel NHERF1 Mutation in Human Breast Cancer and Effects on Malignant Progression.
Na+/H+ exchanger regulatory factor 1 (NHERF1) has been reported to interact with post-synaptic density protein/Drosophila disc large tumour suppressor/zonula occludens 1 protein (PDZ) binding proteins by its two PDZ domains. These associations have effects on cellular signal transductions. NHERF1 has also been indicated as a cancer-related gene in several solid tumour types. We identified a nov...
متن کامل