Site-specific cleavage of MS2 RNA by a thermostable DNA-linked RNase H.

نویسندگان

  • Hyongi Chon
  • Yasuo Tsunaka
  • Mitsuru Haruki
  • Masaaki Morikawa
  • Shigenori Kanaya
چکیده

A series of DNA-linked RNases H, in which the 15-mer DNA is cross-linked to the Thermus thermophilus RNase HI (TRNH) variants at positions 135, 136, 137 and 138, were constructed and analyzed for their abilities to cleave the complementary 15-mer RNA. Of these, that with the DNA adduct at position 135 most efficiently cleaved the RNA substrate, indicating that position 135 is the most appropriate cross-linking site among those examined. To examine whether DNA-linked RNase H also site-specifically cleaves a highly structured natural RNA, DNA-linked TRNHs with a series of DNA adducts varying in size at position 135 were constructed and analyzed for their abilities to cleave MS2 RNA. These DNA adducts were designed such that DNA-linked enzymes cleave MS2 RNA at a loop around residue 2790. Of the four DNA-linked TRNHs with the 8-, 12-, 16- and 20-mer DNA adducts, only that with the 16-mer DNA adduct efficiently and site-specifically cleaved MS2 RNA. Primer extension revealed that this DNA-linked TRNH cleaved MS2 RNA within the target sequence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient cleavage of RNA at high temperatures by a thermostable DNA-linked ribonuclease H.

To construct a DNA-linked RNase H, which cleaves RNA site-specifically at high temperatures, the 15-mer DNA, which is complementary to the polypurine-tract sequence of human immunodeficiency virus-1 RNA (PPT-RNA), was cross-linked to the unique thiol group of Cys135 in the Thermus thermophilus RNase HI variant. The resultant DNA-linked enzyme (d15-C135/TRNH), as well as the d15-C135/ERNH, in wh...

متن کامل

Site-specific excision from RNA by RNase H and mixed-phosphate-backbone oligodeoxynucleotides.

Oligodeoxynucleotides containing phosphodiester or modified internucleoside linkages were investigated with respect to their ability to be acted on by ribonuclease H activities present in a HeLa cell nuclear extract after hybridization with complementary sequences in RNA. Oligodeoxynucleotides complementary to nucleotides 2-14 of human U1 small nuclear RNA were investigated. Extensive cleavage ...

متن کامل

RNase D, a reported new activity associated with HIV-1 reverse transcriptase, displays the same cleavage specificity as Escherichia coli RNase III.

RNase D was recently reported as a new enzymatic activity associated with HIV-1 reverse transcriptase (RT), cleaving RNA at two positions within the double-stranded region of the tRNA primer-viral RNA template complex (Ben-Artzi et al., Proc. Natl. Acad. Sci. USA 89 (1992) 927-931). This would make RNase D a fourth distinct activity of HIV-1 RT, in addition to RNA- and DNA-dependent DNA polymer...

متن کامل

Structure-specific cleavage of the RNA primer from Okazaki fragments by calf thymus RNase HI.

Cleavage specificity of RNase HI was examined on model Okazaki fragments, to determine the likely role of this nuclease in lagging strand DNA replication. Each substrate was prepared by annealing a short RNA primer, made by transcription in vitro, to a single-stranded synthetic DNA template, and subsequently extending the primer by DNA polymerization. The calf thymus RNase HI makes a structure-...

متن کامل

Substrate specificity of an RNase III-like activity from Bacillus subtilis.

Bacillus subtilis bacteriophage SP82 codes for several early RNAs that were shown previously to be cleaved by an RNase III-like enzyme called "Bs-RNase III." Cloning of DNA fragments that encode these RNA sequences downstream of a T7 RNA polymerase promoter allowed the synthesis of substrates that were used to test the cleavage specificity of Bs-RNase III, which was purified from a protease-def...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein engineering

دوره 15 8  شماره 

صفحات  -

تاریخ انتشار 2002