Approximate Finite-Horizon Optimal Control for Input-Affine Nonlinear Systems with Input Constraints
نویسندگان
چکیده
The finite-horizon optimal control problem with input constraints consists in controlling the state of a dynamical system over a finite time interval (possibly unknown) minimizing a cost functional, while satisfying hard constraints on the input. For linear systems the solution of the problem often relies upon the use of bang-bang control signals. For nonlinear systems the “shape” of the optimal input is in general not known. The control input can be found solving an Hamilton-Jacobi-Bellman (HJB) partial differential equation (pde): it typically consists of a combination of bang-bang arcs and singular arcs. In the paper a methodology to approximate the solution of the HJB pde arising in the finite-horizon optimal control problem with input constraints is proposed. This approximation yields a dynamic state feedback law. The theory is illustrated by means of an example: the minimum time optimal control problem for an industrial wastewater treatment plant.
منابع مشابه
Design of a Novel Framework to Control Nonlinear Affine Systems Based on Fast Terminal Sliding-Mode Controller
In this paper, a novel approach for finite-time stabilization of uncertain affine systems is proposed. In the proposed approach, a fast terminal sliding mode (FTSM) controller is designed, based on the input-output feedback linearization of the nonlinear system with considering its internal dynamics. One of the main advantages of the proposed approach is that only the outputs and external state...
متن کاملHybrid model predictive control of a nonlinear three-tank system based on the proposed compact form of piecewise affine model
In this paper, a predictive control based on the proposed hybrid model is designed to control the fluid height in a three-tank system with nonlinear dynamics whose operating mode depends on the instantaneous amount of system states. The use of nonlinear hybrid model in predictive control leads to a problem of mixed integer nonlinear programming (MINLP) which is very complex and time consuming t...
متن کاملOptimization over state feedback policies for robust control with constraints
This paper is concerned with the optimal control of linear discrete-time systems, which are subject to unknown but bounded state disturbances and mixed constraints on the state and input. It is shown that the class of admissible affine state feedback control policies with memory of prior states is equivalent to the class of admissible feedback policies that are affine functions of the past dist...
متن کاملOptimal control of constrained piecewise affine systems with state- and input-dependent disturbances∗
Finite horizon optimal control of piecewise affine systems with a piecewise affine (1-norm or ∞-norm) stage cost and terminal cost is considered. Provided the respective constraint sets are given as the unions of polyhedra, it is shown that the partial value functions and partial optimal control laws are piecewise affine on a polyhedral cover of the set of states that can be steered, by an admi...
متن کاملFinite-Horizon Min-Max Control of Max-Plus-Linear Systems
In this note, we provide a solution to a class of finite-horizon min–max control problems for uncertain max-plus-linear systems where the uncertain parameters are assumed to lie in a given convex and compact set, and it is required that the closed-loop input and state sequence satisfy a given set of linear inequality constraints for all admissible uncertainty realizations. We provide sufficient...
متن کامل