Long-term genetic monitoring of a riverine dragonfly, Orthetrum coerulescens (Odonata: Libellulidae]: Direct anthropogenic impact versus climate change effects
نویسندگان
چکیده
Modern conservationists call for long term genetic monitoring datasets to evaluate and understand the impact of human activities on natural ecosystems and species on a global but also local scale. However, long-term monitoring datasets are still rare but in high demand to correctly identify, evaluate and respond to environmental changes. In the presented study, a population of the riverine dragonfly, Orthetrum coerulescens (Odonata: Libellulidae), was monitored over a time period from 1989 to 2013. Study site was an artificial irrigation ditch in one of the last European stone steppes and "nature heritage", the Crau in Southern France. This artificial riverine habitat has an unusual high diversity of odonate species, prominent indicators for evaluating freshwater habitats. A clearing of the canal and destruction of the bank vegetation in 1996 was assumed to have great negative impact on the odonate larval and adult populations. Two mitochondrial markers (CO1 & ND1) and a panel of nuclear microsatellite loci were used to assess the genetic diversity. Over time they revealed a dramatic decline in diversity parameters between the years 2004 and 2007, however not between 1996 and 1997. From 2007 onwards the population shows a stabilizing trend but has not reached the amount of genetic variation found at the beginning of this survey. This decline cannot be referred to the clearing of the canal or any other direct anthropogenic impact. Instead, it is most likely that the populations' decay was due to by extreme weather conditions during the specific years. A severe drought was recorded for the summer months of these years, leading to reduced water levels in the canal causing also other water parameters to change, and therefore impacting temperature sensitive riverine habitat specialists like the O. coerulescens in a significant way. The data provide important insights into population genetic dynamics and metrics not always congruent with traditional monitoring data (e.g. abundance); a fact that should be regarded with caution when management plans for developed landscapes are designed.
منابع مشابه
The Dragonfly Family Libellulidae (Insecta: Odonata: Anisoptera) of Shiraz and its Vicinity (Fars Province, Iran)
Thirteen species in five genera of the Libellulidae family were collected in a survey of dragonflies (Odonata) of Shiraz and its vicinity, involving 19 locations, The presented records of the libellulid dragonflies taken from the Fars province comprise a first time collection of two genera, Sympetrum and Pantala, and seven species, Orthetrum anceps Schnider, Orthetrum taeniolatum Schneider, Ort...
متن کاملNiche Partitioning in Three Sympatric Congeneric Species of Dragonfly, Orthetrum chrysostigma, O. coerulescens anceps, and O. nitidinerve: The Importance of Microhabitat
Habitat heterogeneity has been shown to promote co-existence of closely related species. Based on this concept, a field study was conducted on the niche partitioning of three territorial congeneric species of skimmers (Anisoptera: Libellulidae) in Northeast Algeria during the breeding season of 2011. According to their size, there is a descending hierarchy between Orthetrum nitidinerve Sélys, O...
متن کاملDNA Barcoding of selected dragonfly species ( Libellulidae and Aeshnidae ) for species authentication with phylogenetic assessment
Dragonflies are the bio indicators of the aquatic ecosystem. Knowledge and studies on the diversity of dragonflies in India is very high. Identification by traditional taxonomy often leads to misidentification. Incidence of sexual dimorphism is found to be high particularly in the Libellulidae and Aeshnidae family. In order to resolve the above mentioned problem, the accurate identification of ...
متن کاملHome Range, Movement, and Distribution Patterns of the Threatened Dragonfly Sympetrum depressiusculum (Odonata: Libellulidae): A Thousand Times Greater Territory to Protect?
Dragonflies are good indicators of environmental health and biodiversity. Most studies addressing dragonfly ecology have focused on the importance of aquatic habitats, while the value of surrounding terrestrial habitats has often been overlooked. However, species associated with temporary aquatic habitats must persist in terrestrial environments for long periods. Little is known about the impor...
متن کاملDragonfly cyclovirus, a novel single-stranded DNA virus discovered in dragonflies (Odonata: Anisoptera).
Dragonfly cyclovirus (DfCyV), a new species of ssDNA virus discovered using viral metagenomics in dragonflies (family Libellulidae) from the Kingdom of Tonga. Metagenomic sequences of DfCyV were similar to viruses of the recently proposed genus Cyclovirus within the family Circoviridae. Specific PCRs resulted in the recovery of 21 DfCyV genomes from three dragonfly species (Pantala flavescens, ...
متن کامل