Covering n-Permutations with (n+1)-Permutations

نویسندگان

  • Taylor F. Allison
  • Anant P. Godbole
  • Kathryn M. Hawley
  • Bill Kay
چکیده

Let Sn be the set of all permutations on [n] := {1, 2, . . . , n}. We denote by κn the smallest cardinality of a subset A of Sn+1 that “covers” Sn, in the sense that each π ∈ Sn may be found as an order-isomorphic subsequence of some π′ in A. What are general upper bounds on κn? If we randomly select νn elements of Sn+1, when does the probability that they cover Sn transition from 0 to 1? Can we provide a fine-magnification analysis that provides the “probability of coverage” when νn is around the level given by the phase transition? In this paper we answer these questions and raise others.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharply $(n-2)$-transitive Sets of Permutations

Let $S_n$ be the symmetric group on the set $[n]={1, 2, ldots, n}$. For $gin S_n$ let $fix(g)$ denote the number of fixed points of $g$. A subset $S$ of $S_n$ is called $t$-emph{transitive} if for any two $t$-tuples $(x_1,x_2,ldots,x_t)$ and $(y_1,y_2,ldots ,y_t)$ of distinct elements of $[n]$, there exists $gin S$ such that $x_{i}^g=y_{i}$ for any $1leq ileq t$ and additionally $S$ is called e...

متن کامل

Covering radius for sets of permutations

We study the covering radius of sets of permutations with respect to the Hamming distance. Let f(n, s) be the smallest number m for which there is a set of m permutations in Sn with covering radius r ≤ n − s. We study f(n, s) in the general case and also in the case when the set of permutations forms a group. We find f(n, 1) exactly and bounds on f(n, s) for s > 1. For s = 2 our bounds are line...

متن کامل

Pattern Avoidance in Multiset Permutations: Bijective Proof

A permutation σ = σ1σ2 . . . σn of n letters contains the pattern τ = τ1τ2 . . . τk of k letters if for some i1 < i2 < · · · < ik we have σis < σit whenever τs < τt. A permutation is said to avoid any pattern it does not contain. It is well-known that the number of permutations of n letters that avoid a pattern τ of 3 letters is independent of τ . Savage and Wilf [3] have shown the same result ...

متن کامل

F-Permutations induce Some Graphs and Matrices

In this paper, by using the notion of fuzzy subsets, the concept of F-permutation is introduced. Then by applying this notion the concepts of presentation of an F-polygroup, graph of an F-permutation and F-permutation matrices are investigated.

متن کامل

Transversals of Latin squares and covering radius of sets of permutations

We consider the symmetric group Sn as a metric space with the Hamming metric. The covering radius cr(S) of a set of permutations S ⊂ Sn is the smallest r such that Sn is covered by the balls of radius r centred at the elements of S. For given n and s, let f (n, s) denote the cardinality of the smallest set S of permutations with cr(S) 6 n − s. The value of f (n, 2) is the subject of a conjectur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013