Effect of drag reducing polymer on air–water annular flow in an inclined pipe

نویسندگان

  • A. Al-Sarkhi
  • E. Abu-Nada
  • M. Batayneh
چکیده

Drag reduction (DR) for air and water flowing in an inclined 0.0127 m diameter pipe was investigated experimentally. The fluids had an annular configuration and the pipe is inclined upward. The injection of drag reducing polymer (DRP) solution produced drag reductions as high as 71% with concentration of 100 ppm in the pipeline. A maximum drag reduction that is accompanied (in most cases) by a change to a stratified or annular-stratified pattern. The drag reduction is sensitive to the gas and liquid superficial velocities and the pipe inclination. Maximum drag reduction was achieved in the case of pipe inclination of 1.28 at the lowest superficial gas velocity and the highest superficial liquid velocity. For the first time in literature, the drag reduction variations with the square root of the superficial velocities ration for flows with the same final flow patterns have self-similar behaviors. 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Numerical Study of the Effect of Aspect Ratio on Heat Transfer in an Annular Flow Through a 270-Degree Curved Pipe.

In the present paper, a three dimensional annular developing incompressible laminar flow through 270- degree curved pipe is numerically simulated. The dimensionless governing equations of continuity, momentums and energy are driven in toroidal coordinates. The governing equations are discretized by projection algorithm using forward difference in time and central difference in space. A three-di...

متن کامل

Turbulent Flow of Viscoelastic Fluid Through Complicated Geometry

Viscoelastic liquids with very small amounts of polymer/surfactant additives can, as well known since B.A. Toms’ observation in 1948, provide substantial reductions in frictional drag of wall-bounded turbulence relative to the corresponding Newtonian fluid flow. Friction reductions of up to 80% compared to the pure water flow can be occasionally achieved with smooth channel/pipe flow of viscoel...

متن کامل

Experiments in Turbulent Pipe Flow with Polymer Additives at Maximum Drag Reduction

In this paper we report on (two-component) LDV experiments in a fully developed turbulent pipe flow with a drag-reducing polymer (partially hydrolyzed polyacrylamide) dissolved in water. The Reynolds number based on the mean velocity, the pipe diameter and the local viscosity at the wall is approximately 10000. We have used polymer solutions with three different concentrations which have been c...

متن کامل

A Dual Conductance Sensor for Simultaneous Measurement of Void Fraction and Structure Velocity of Downward Two-Phase Flow in a Slightly Inclined Pipe

In this study, a new and improved electrical conductance sensor is proposed for application not only to a horizontal pipe, but also an inclined one. The conductance sensor was designed to have a dual layer, each consisting of a three-electrode set to obtain two instantaneous conductance signals in turns, so that the area-averaged void fraction and structure velocity could be measured simultaneo...

متن کامل

Physical Modelling of Self-Aeration in a Cavitating Sudden PIPE Expansion Flow

Sudden pipe expansions have been known as efficient hydraulic energy dissipaters for a long time. The complex phenomenon of flow separation and velocity discontinuity at the interface of incoming jet and the recirculation flow, results in intensive shear and tensile rupture of the fluid and the associated destructive phenomenon of cavitation. This paper focuses on aeration in sudden pipe expans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006