The Role of Lipoprotein-Associated Phospholipase A₂ in a Murine Model of Experimental Autoimmune Uveoretinitis
نویسندگان
چکیده
Macrophage activation is, in part, regulated via hydrolysis of oxidised low density lipoproteins by Lipoprotein-Associated phospholipase A2 (Lp-PLA2), resulting in increased macrophage migration, pro-inflammatory cytokine release and chemokine expression. In uveitis, tissue damage is mediated as a result of macrophage activation; hence inhibition of Lp-PLA2 may limit macrophage activation and protect the tissue. Utilising Lp-PLA2 gene-deficient (KO) mice and a pharmacological inhibitor of Lp-PLA2 (SB-435495) we aimed to determine the effect of Lp-PLA2 suppression in mediating retinal protection in a model of autoimmune retinal inflammation, experimental autoimmune uveoretinitis (EAU). Following immunisation with RBP-3 (IRBP) 1-20 or 161-180 peptides, clinical disease was monitored and severity assessed, infiltrating leukocytes were enumerated by flow cytometry and tissue destruction quantified by histology. Despite ablation of Lp-PLA2 enzyme activity in Lp-PLA2 KO mice or wild-type mice treated with SB-435495, the number of infiltrating CD45+ cells in the retina was equivalent to control EAU animals, and there was no reduction in disease severity. Thus, despite the reported beneficial effects of therapeutic Lp-PLA2 depletion in a variety of vascular inflammatory conditions, we were unable to attenuate disease, show delayed disease onset or prevent progression of EAU in Lp-PLA2 KO mice. Although EAU exhibits inflammatory vasculopathy there is no overt defect in lipid metabolism and given the lack of effect following Lp-PLA2 suppression, these data support the hypothesis that sub-acute autoimmune inflammatory disease progresses independently of Lp-PLA2 activity.
منابع مشابه
The Effect of Eight Weeks of High-intensity Interval Training on Lipoprotein-associated Phospholipase A2 and Lipid Profile in a Male Rat Model of Type 2 Diabetes
Introduction: Type 2 diabetes (T2D) causes hyperglycemia, hyperinsulinemia, and dyslipidemia, which are all risk factors for atherosclerosis. Lipoprotein-associated phospholipase A2 (Lp-PLA2) has been recognized as an indicator of atherosclerosis due to its role in vessel inflammation. This study aimed to investigate the effect of high-intensity interval training (HIIT) on serum levels of Lp-PL...
متن کاملO 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملS100B Up-Regulates Macrophage Production of IL1β and CCL22 and Influences Severity of Retinal Inflammation
S100B is a Ca2+ binding protein and is typically associated with brain and CNS disorders. However, the role of S100B in an inflammatory situation is not clear. The aim of the study was to determine whether S100B is likely to influence inflammation through its effect on macrophages. A murine macrophage cell line (RAW 264.7) and primary bone marrow derived macrophages were used for in vitro studi...
متن کاملSialoadhesin promotes the inflammatory response in experimental autoimmune uveoretinitis.
Macrophages are a prominent component of the effector cell compartment in a number of CD4+ T cell-mediated organ-specific autoimmune diseases. In this study, we investigated the role of the sialic acid binding Ig-like lectin sialoadhesin (Sn, Siglec-1) in a model of interphotoreceptor retinal binding protein peptide-induced experimental autoimmune uveoretinitis in mice with targeted deletion of...
متن کاملInhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis
Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal ...
متن کامل