Electricity storage in biofuels: selective electrocatalytic reduction of levulinic acid to valeric acid or γ-valerolactone.

نویسندگان

  • Le Xin
  • Zhiyong Zhang
  • Ji Qi
  • David J Chadderdon
  • Yang Qiu
  • Kayla M Warsko
  • Wenzhen Li
چکیده

Herein, we report an effective approach to electricity storage in biofuels by selective electrocatalytic reduction of levulinic acid (LA) to high-energy-density valeric acid (VA) or γ-valerolactone (gVL) on a non-precious Pb electrode in a single-polymer electrolyte membrane electrocatalytic (flow) cell reactor with a very high yield of VA (>90 %), a high Faradaic efficiency (>86 %), promising electricity storage efficiency (70.8 %), and a low electricity consumption (1.5 kWhL(VA)(-1) ). The applied potential and electrolyte pH can be used to accurately control the reduction products: lower overpotentials favor the production of gVL, whereas higher overpotentials facilitate the formation of VA. A selectivity of 95 % to VA in acidic electrolyte (pH 0) and 100 % selectivity to gVL in neutral electrolyte (pH 7.5) are obtained. The effect of the molecular structure on the electrocatalytic reduction of ketone and aldehyde groups of biomass compounds was investigated. Whereas LA can be fully electroreduced to VA though a four-electron transfer, the C-O groups are only electroreduced to -OH by a two-electron-transfer process when glyoxylic acid and pyruvic acid serve as feedstocks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts.

Levulinic acid and its esters are converted to γ-valerolactone over metal oxide catalysts by catalytic transfer hydrogenation via the Meerwein-Ponndorf-Verley reaction.

متن کامل

Selective hydrogenation of levulinic acid to γ-valerolactone using in situ generated ruthenium nanoparticles derived from Ru-NHC complexes.

Hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) was studied by using mono- and bidentate p-cymene ruthenium(ii) N-heterocyclic carbene (NHC) complexes as catalyst precursors. In water, all complexes were found to be reduced in situ to form ruthenium nanoparticles (RuNPs) with a high hydrogenation activity. In organic solvents, complexes with monodentate NHC ligands also formed nan...

متن کامل

High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to γ-valerolactone

The catalytic hydrogenation of levulinic acid, a key platform molecule in many biorefinery schemes, into γ-valerolactone is considered as one of the pivotal reactions to convert lignocellulose-based biomass into renewable fuels and chemicals. Here we report on the development of highly active, selective and stable supported metal catalysts for this reaction and on the beneficial effects of meta...

متن کامل

Conversion of levulinic acid into γ-valerolactone using Fe3(CO)12: mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis.

The conversion of biomass-derived levulinic acid (LA) into gamma-valerolactone (GVL) using formic acid (FA) and Fe3(CO)12 as the catalyst precursor was achieved in 92% yield. To mimic a biorefinery setting, crude liquor (containing 20% LA) from the acid hydrolysis of sugarcane biomass in a pilot plant facility was directly converted into GVL in good yield (50%), without the need for isolating LA.

متن کامل

Influence of Sulfuric Acid on the Performance of Ruthenium‐based Catalysts in the Liquid‐Phase Hydrogenation of Levulinic Acid to γ‐Valerolactone

The presence of biogenic or process-derived impurities poses a major problem on the efficient catalytic hydrogenation of biomass-derived levulinic acid to γ-valerolactone; hence, studies on their influence on catalyst stability are now required. Herein, the influence of sulfuric acid as feed impurity on the performance of Ru-based heterogeneous catalysts, including Ru/ZrO2 and mono- and bimetal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ChemSusChem

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 2013