Extent of Night Warming and Spatially Heterogeneous Cloudiness Differentiate Temporal Trend of Greenness in Mountainous Tropics in the New Century
نویسندگان
چکیده
Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000-2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend.
منابع مشابه
Precipitation Trends Analysis in Southwest Asia during the Last Half Century
Precipitation is a climatic elements that have temporal - spatial distribution. In this research database of Global Precipitation Climatology Centre (GPCC) with a resolution 0.5×0.5 degree for 50 year is used, that was constituted with dimensions of 12800*600. Temporal data are on the columns and pixels (spatial data) located on the rows. The results show an increasing trend in spring and fall ...
متن کاملآشکارسازی روند تغییرات بارش شمال کشور با استفاده از آزمون غیرپارامتری من-کندال
Climate scientists have concluded that the air temperature of earth’s surface warmed to 0.6 during the 20th century, and that warming induced by increasing concentrations of greenhouse gases accompanied by changes in the precipitation and hydrologic cycle. Monthly, seasonal and annual precipitation trends of meteorological stations have been analyzed and interpolated in the northern part of Ira...
متن کاملSolute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کاملSolute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow
In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...
متن کاملSpatiotemporal patterns of changes in maximum and minimum temperatures in multi-model simulations
[1] This paper analyzes and attributes spatial and temporal patterns of changes in the diurnal cycle of land surface air temperature in 20 simulations from 11 global coupled atmosphere-ocean general circulation models during the 20th century and the 21st century under the SRES A1B scenario. Most of the warming in the maximum (Tmax) and minimum (Tmin) temperatures from 1900 to 2099 is attributed...
متن کامل