Wind Wave Effects on Hydrodynamic Modeling of Ocean Circulation in the South China Sea
نویسندگان
چکیده
Wind, wave and current interactions control the boundary fluxes, momentum and energy exchange between the atmosphere and the ocean, and within the water column. The wind wave effect on the circulation is investigated in a threedimensional time-dependant ocean circulation model. This POM (Princeton Ocean Model) based model is implemented with realistic coastlines in South China Sea and emphasizes the simulation of physical parameters in the water column. Taking account of the wind waves, an increase in air-sea drag coefficient, reflecting an enhanced sea surface roughness due to increased wave heights, is shown to improve the simulated surface current and the sea surface elevation. It is also found that developing waves with smaller peak periods influenced the surface circulation more significantly. The inclusion of the wind wave parameterization also affects the current near the seabed in the shallow water. The model is validated against current, temperature and salinity data measured in the Asian Seas International Acoustics Experiment (ASIAEX). The simulation results in the period of April May 2001 show that wave-induced surface stress increases the magnitude of currents both at the surface and near the seabed. On the other hand, wave-induced bottom stress retards the near bottom currents in shallow water. Therefore the net effect of wind waves on circulation depends on the significance of current and elevation changes due to wind waves through both the surface and the bottom.
منابع مشابه
Wind Wave Effects On Surface Stress In Hydrodynamic Modeling
Wind, wave and current interactions control the boundary fluxes, momentum and energy exchange between the atmosphere and the ocean, and within the water column. The wind wave effect on surface stress is investigated using a three-dimensional time-dependant ocean circulation model. The POM (Princeton Ocean Model) based model is implemented with realistic coastlines in South China Sea and emphasi...
متن کامل3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon
Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...
متن کاملEnhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)
The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...
متن کاملHydrodynamic Modelling of Coral Reefs:Ningaloo Reef-Western Australia
As with all coral reef systems, the ecology of Ningaloo Reef is closely linked to water circulation which transport and disperse key material such as nutrients and larvae. Circulation on coral reefs may be driven by a number of forcing mechanisms including waves, tides, wind, and buoyancy effects. Surface waves interacting with reefs have long been known to dominate the currents on many coral r...
متن کاملDynamics of the Water Circulations in the Southern South China Sea and Its Seasonal Transports
A three-dimensional Regional Ocean Modeling System is used to study the seasonal water circulations and transports of the Southern South China Sea. The simulated seasonal water circulations and estimated transports show consistency with observations, e.g., satellite altimeter data set and re-analysis data of the Simple Ocean Data Assimilation. It is found that the seasonal water circulations ar...
متن کامل