Dequantization of Coadjoint Orbits: Moment Sets and Characteristic Varieties

نویسندگان

  • Ali Baklouti
  • ALI BAKLOUTI
چکیده

We present in this paper two dequantization procedures of coadjoint orbits in the setting of exponential solvable Lie groups. The first one consists in considering generalized moment sets of unitary representations. The second one concerns characteristic and Poisson characteristic varieties of some topological unitary modules over a deformed algebra appropriately associated with a given representation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dequantization of coadjoint orbits: the case of exponential Lie groups

convexity and cone-vexing abstractions Semen S. Kutateladze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Interval analysis for algorithms of idempotent and tropical mathematics Grigory L. Litvinov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Dequantization procedures related to the Ma...

متن کامل

Coadjoint Orbits, Spin and Dequantization

In this Letter we propose two path integral approaches to describe the classical mechanics of spinning particles. We show how these formulations can be derived from the associated quantum ones via a sort of geometrical dequantization procedure proposed in a previous paper.

متن کامل

Toric moment mappings and Riemannian structures

We give an interpretation of the symplectic fibrations of coadjoint orbits for the group SU(4) in terms of the compatibility of Riemannian G -reductions in six dimensions. An analysis of moment polytopes associated to a standard Hamiltonian toric action on the coadjoint orbits highlights these relations. This theory leads to a geometrical application to intrinsic torsion classes of 6-dimensiona...

متن کامل

Nilpotent Orbits and Complex Dual Pairs

τ(w)(x) = 〈x(w), w〉, w ∈ W, x ∈ g ⊆ End(W ), and similarly for τ ′. Our main theorem describes the behaviour of closures of nilpotent orbits under the action of moment maps. It is easy to see that for a nilpotent coadjoint orbit O ⊆ g∗ the set τ ′(τ−1(O)) is the union of nilpotent coadjoint orbits in g′. It turns out that it is a closure of a single orbit: Theorem 1.1 Let O ⊆ g∗ be a nilpotent ...

متن کامل

Cohomology of Symplectic Reductions of Generic Coadjoint Orbits

Let Oλ be a generic coadjoint orbit of a compact semi-simple Lie group K. Weight varieties are the symplectic reductions of Oλ by the maximal torus T in K. We use a theorem of Tolman and Weitsman to compute the cohomology ring of these varieties. Our formula relies on a Schubert basis of the equivariant cohomology of Oλ, and it makes explicit the dependence on λ and a parameter in Lie(T )∗ =: t∗.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004