Linear Discrepancy of Basic Totally Unimodular Matrices
نویسنده
چکیده
We show that the linear discrepancy of a basic totally unimodular matrix A ∈ Rm×n is at most 1− 1 n+1 . This extends a result of Peng and Yan. AMS Subject Classification: Primary 11K38.
منابع مشابه
A note on linear discrepancy
Close upper and lower bounds on the linear discrepancy of incidence matrices of directed graphs are determined. For such matrices this improves on a bound found in the work of Doerr [Linear discrepancy of basic totally unimodular matrices, The Electronic Journal of Combinatorics, 7:Research Paper 48, 4 pp., 2000].
متن کاملOn the discrepancy of strongly unimodular matrices
A (0, 1) matrix A is strongly unimodular if A is totally unimodular and every matrix obtained from A by setting a nonzero entry to 0 is also totally unimodular. Here we consider the linear discrepancy of strongly unimodular matrices. It was proved by Lováz, et.al. [5] that for any matrix A, lindisc(A) ≤ herdisc(A). (1) When A is the incidence matrix of a set-system, a stronger inequality holds:...
متن کاملLinear Discrepancy of Totally Unimodular Matrices
Let p ∈ [1,∞[ and cp = maxa∈[0,1]((1 − a)ap + a(1 − a)p)1/p. We prove that the known upper bound lindiscp(A) ≤ cp for the Lp linear discrepancy of a totally unimodular matrix A is asymptotically sharp, i.e., sup A lindiscp(A) = cp. We estimate cp = p p+1 ( 1 p+1 )1/p (1+εp) for some εp ∈ [0, 2−p+2], hence cp = 1− ln p p (1+ o(1)). We also show that an improvement for smaller matrices as in the ...
متن کاملA bidirected generalization of network matrices
We define binet matrices, which furnish a direct generalization of totally unimodular network matrices and arise from the node-edge incidence matrices of bidirected graphs in the same way as the network matrices do from directed graphs. We develop the necessary theory, give binet representations for interesting sets of matrices, characterize totally unimodular binet matrices and discuss the rec...
متن کاملLecture 4 — Total Unimodularity and Total Dual Integrality
Definition 1.1. A matrix A ∈ Zm×n is totally unimodular if the determinant of every square submatrix B ∈ Zk×k equals either −1, 0, or +1. Alternatively, by Cramer’s rule, A ∈ Zm×n is totally unimodular if every nonsingular submatrix B ∈ Zk×k has an integral inverse B−1 ∈ Zk×k. Recall: B−1 = 1 det B B ∗, where B∗ is the adjugate matrix (transpose of the matrix of cofactors) of B. One important c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 7 شماره
صفحات -
تاریخ انتشار 2000