An adaptation of the Newton iteration method to solve symmetric positive definite Toeplitz systems
نویسندگان
چکیده
The classical Newton iteration method for matrices can be modified into an efficient algorithm when structured matrices are involved. The difficulty, however, is the importance of the choice of the starting matrix. In this paper, we propose a new initial iteration step which makes the choice of the starting matrix less critical. The validity of the approach is illustrated by numerical experiments.
منابع مشابه
A Total Least Squares Methodfor Toeplitz
A Newton method to solve total least squares problems for Toeplitz systems of equations is considered. When coupled with a bisection scheme, which is based on an eecient algorithm for factoring Toeplitz matrices, global convergence can be guaranteed. Circulant and approximate factorization preconditioners are proposed to speed convergence when a conjugate gradient method is used to solve linear...
متن کاملA Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation
Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...
متن کاملA hybrid method for computing the smallest eigenvalue of a symmetric and positive definite Toeplitz matrix
In this paper we suggest a hybrid method for computing the smallest eigenvalue of a symmetric and positive definite Toeplitz matrix which takes advantage of two types of methods, Newton’s method for the characteristic polynomial and projection methods based on rational interpolation of the secular equation.
متن کاملBIT Submitted May 1997, Revised February 1998. A TOTAL LEAST SQUARES METHOD FOR TOEPLITZ SYSTEMS OF EQUATIONS
A Newton method to solve total least squares problems for Toeplitz systems of equations is considered. When coupled with a bisection scheme, which is based on an eecient algorithm for factoring Toeplitz matrices, global convergence can be guaranteed. Circulant and approximate factorization preconditioners are proposed to speed convergence when a conjugate gradient method is used to solve linear...
متن کاملComputation of the Newton step for the even and odd characteristic polynomials of a symmetric positive definite Toeplitz matrix
We compute the Newton step for the characteristic polynomial and for the even and odd characteristic polynomials of a symmetric positive definite Toeplitz matrix as the reciprocal of the trace of an appropriate matrix. We show that, after the Yule–Walker equations are solved, this trace can be computed in O(n) additional arithmetic operations, which is in contrast to existing methods, which rel...
متن کامل