Structure–Function Relations of the First and Fourth Extracellular Linkers of the Type IIa Na+/Pi Cotransporter
نویسندگان
چکیده
Functionally important sites in the predicted first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter (NaPi-IIa) were identified by cysteine scanning mutagenesis (Ehnes et al., 2004). Cysteine substitution or modification with impermeant and permeant methanethiosulfonate (MTS) reagents at certain sites resulted in changes to the steady-state voltage dependency of the cotransport mode (1 mM Pi, 100 mM Na+ at pH 7.4) of the mutants. At Gly-134 (ECL-1) and Met-533 (ECL-4), complementary behavior of the voltage dependency was documented with respect to the effect of cys-substitution and modification. G134C had a weak voltage dependency that became even stronger than that of the wild type (WT) after MTS incubation. M533C showed a WT-like voltage dependency that became markedly weaker after MTS incubation. To elucidate the underlying mechanism, the steady-state and presteady-state kinetics of these mutants were studied in detail. The apparent affinity constants for Pi and Na+ did not show large changes after MTS exposure. However, the dependency on external protons was changed in a complementary manner for each mutant. This suggested that cys substitution at Gly-134 or modification of Cys-533 had induced similar conformational changes to alter the proton modulation of transport kinetics. The changes in steady-state voltage dependency correlated with changes in the kinetics of presteady-state charge movements determined in the absence of Pi, which suggested that voltage-dependent transitions in the transport cycle were altered. The steady-state and presteady-state behavior was simulated using an eight-state kinetic model in which the transition rate constants of the empty carrier and translocation of the fully loaded carrier were found to be critical determinants of the transport kinetics. The simulations predict that cys substitution at Gly-134 or cys modification of Cys-533 alters the preferred orientation of the empty carrier from an inward to outward-facing conformation for hyperpolarizing voltages.
منابع مشابه
Structure–Function Relations of the First and Fourth Predicted Extracellular Linkers of the Type IIa Na+/Pi Cotransporter
The putative first intracellular and third extracellular linkers are known to play important roles in defining the transport properties of the type IIa Na+-coupled phosphate cotransporter (Kohler, K., I.C. Forster, G. Stange, J. Biber, and H. Murer. 2002b. J. Gen. Physiol. 120:693-705). To investigate whether other stretches that link predicted transmembrane domains are also involved, the subst...
متن کاملStructure–Function Relations of the First and Fourth Extracellular Linkers of the Type IIa Na /P i Cotransporter: II. Substrate Interaction and Voltage Dependency of Two Functionally Important Sites
Functionally important sites in the predicted first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter (NaPi-IIa) were identified by cysteine scanning mutagenesis (Ehnes et al., 2004). Cysteine substitution or modification with impermeant and permeant methanethiosulfonate (MTS) reagents at certain sites resulted in changes to the steady-state voltage dependency of the cotrans...
متن کاملAFLUID November 46/5
Murer, Heini, Ian Forster, Nati Hernando, Georg Lambert, Martin Traebert, and Jürg Biber. Posttranscriptional regulation of the proximal tubule NaPi-II transporter in response to PTH and dietary Pi. Am. J. Physiol. 277 (Renal Physiol. 46): F676–F684, 1999.—The rate of proximal tubular reabsorption of phosphate (Pi) is a major determinant of Pi homeostasis. Deviations of the extracellular concen...
متن کاملPosttranscriptional regulation of the proximal tubule NaPi-II transporter in response to PTH and dietary Pi.
The rate of proximal tubular reabsorption of phosphate (Pi) is a major determinant of Pi homeostasis. Deviations of the extracellular concentration of Piare corrected by many factors that control the activity of Na-Pi cotransport across the apical membrane. In this review, we describe the regulation of proximal tubule Pi reabsorption via one particular Na-Pi cotransporter (the type IIa cotransp...
متن کاملAmino acids involved in sodium interaction of murine type II Na(+)-P(i) cotransporters expressed in Xenopus oocytes.
Type IIa and IIb Na+-Pi cotransporters are highly conserved proteins expressed in brush border membranes of proximal tubules and small intestine, respectively. The kinetics of IIa and IIb differ significantly: type IIb is saturated at lower concentrations of Na+ and Pi. To define the domain responsible for the difference in Na+ affinity we constructed several mouse IIa-IIb chimeras as well as s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 124 شماره
صفحات -
تاریخ انتشار 2004