Suboptimality Conditions for Mathematical Programs with Equilibrium Constraints
نویسندگان
چکیده
In this paper we study mathematical programs with equilibrium constraints (MPECs) described by generalized equations in the extended form 0 ∈ G(x, y) +Q(x, y), where both mappings G and Q are set-valued. Such models arise, in particular, from certain optimization-related problems governed by variational inequalities and first-order optimality conditions in nondifferentiable programming. We establish new weak and strong suboptimality conditions for the general MPEC problems under consideration in finite-dimensional and infinite-dimensional spaces that do not assume the existence of optimal solutions. This issue is particularly important for infinite-dimensional optimization problems, where the existence of optimal solutions requires quite restrictive assumptions. Our techniques are mainly based on modern tools of variational analysis and generalized differentiation revolving around the fundamental extremal principle in variational analysis and its analytic counterpart known as the subdifferential variational principle.
منابع مشابه
Characterizations of linear suboptimality for mathematical programs with equilibrium constraints
The paper is devoted to the study of a new notion of linear suboptimality in constrained mathematical programming. This concept is different from conventional notions of solutions to optimization-related problems, while seems to be natural and significant from the viewpoint of modern variational analysis and applications. In contrast to standard notions, it admits complete characterizations via...
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملEnhanced Karush-Kuhn-Tucker Condition for Mathematical Programs with Equilibrium Constraints
In this paper, we study necessary optimality conditions for nonsmooth mathematical programs with equilibrium constraints. We first show that, unlike the smooth case, the Mathematical Program with Equilibrium Constraints Linear Independent Constraint Qualification is not a constraint qualification for the strong stationary condition when the objective function is nonsmooth. We argue that the str...
متن کاملA Merit Function Piecewise SQP Algorithm for Solving Mathematical Programs with Equilibrium Constraints∗
In this paper we propose a merit function piecewise SQP algorithm for solving mathematical programs with equilibrium constraints (MPECs) formulated as mathematical programs with complementarity constraints. Under some mild conditions, the new algorithm is globally convergent to a piecewise stationary point. Moreover if the partial MPECLICQ is satisfied at the accumulation point then the accumul...
متن کاملA Class of Quadratic Programs with Linear Complementarity Constraints
We consider a class of quadratic programs with linear complementarity constraints (QPLCC) which belong to mathematical programs with equilibrium constraints (MPEC). We investigate various stationary conditions and present new and strong necessary and sufficient conditions for global and local optimality. Furthermore, we propose a Newton-like method to find an M-stationary point in finite steps ...
متن کامل