Isolation and characterization of selective and potent human Fab inhibitors directed to the active-site region of the two-component NS2B-NS3 proteinase of West Nile virus.
نویسندگان
چکیده
There is a need to develop inhibitors of mosquito-borne flaviviruses, including WNV (West Nile virus). In the present paper, we describe a novel and efficient recombinant-antibody technology that led us to the isolation of inhibitory high-affinity human antibodies to the active-site region of a viral proteinase. As a proof-of-principal, we have successfully used this technology and the synthetic naive human combinatorial antibody library HuCAL GOLD(R) to isolate selective and potent function-blocking active-site-targeting antibodies to the two-component WNV NS (non-structural protein) 2B-NS3 serine proteinase, the only proteinase encoded by the flaviviral genome. First, we used the wild-type enzyme in antibody screens. Next, the positive antibody clones were counter-screened using an NS2B-NS3 mutant with a single mutation of the catalytically essential active-site histidine residue. The specificity of the antibodies to the active site was confirmed by substrate-cleavage reactions and also by using proteinase mutants with additional single amino-acid substitutions in the active-site region. The selected WNV antibodies did not recognize the structurally similar viral proteinases from Dengue virus type 2 and hepatitis C virus, and human serine proteinases. Because of their high selectivity and affinity, the identified human antibodies are attractive reagents for both further mutagenesis and structure-based optimization and, in addition, for studies of NS2B-NS3 activity. Conceptually, it is likely that the generic technology reported in the present paper will be useful for the generation of active-site-specific antibody probes for multiple enzymes.
منابع مشابه
The two-component NS2B-NS3 proteinase represses DNA unwinding activity of the West Nile virus NS3 helicase.
Similar to many flavivirus types including Dengue and yellow fever viruses, the nonstructural NS3 multifunctional protein of West Nile virus (WNV) with an N-terminal serine proteinase domain and an RNA triphosphatase, an NTPase domain, and an RNA helicase in the C-terminal domain is implicated in both polyprotein processing and RNA replication and is therefore a promising drug target. To exhibi...
متن کاملEnzymatic characterization and homology model of a catalytically active recombinant West Nile virus NS3 protease.
West Nile Virus (WNV) is a mosquito-borne flavivirus with a rapidly expanding global distribution. Infection causes severe neurological disease and fatalities in both human and animal hosts. The West Nile viral protease (NS2B-NS3) is essential for post-translational processing in host-infected cells of a viral polypeptide precursor into structural and functional viral proteins, and its inhibiti...
متن کاملNMR Analysis of the Dynamic Exchange of the NS2B Cofactor between Open and Closed Conformations of the West Nile Virus NS2B-NS3 Protease
BACKGROUND The two-component NS2B-NS3 proteases of West Nile and dengue viruses are essential for viral replication and established targets for drug development. In all crystal structures of the proteases to date, the NS2B cofactor is located far from the substrate binding site (open conformation) in the absence of inhibitor and lining the substrate binding site (closed conformation) in the pre...
متن کاملFunctional characterization of cis and trans activity of the Flavivirus NS2B-NS3 protease.
Flaviviruses are serious human pathogens for which treatments are generally lacking. The proteolytic maturation of the 375-kDa viral polyprotein is one target for antiviral development. The flavivirus serine protease consists of the N-terminal domain of the multifunctional nonstructural protein 3 (NS3) and an essential 40-residue cofactor (NS2B(40)) within viral protein NS2B. The NS2B-NS3 prote...
متن کاملNMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease.
The two-component NS2B-NS3 protease of West Nile virus is essential for its replication and presents an attractive target for drug development. Here, we describe protocols for the high-yield expression of stable isotope-labelled samples in vivo and in vitro. We also describe the use of NMR spectroscopy to determine the binding mode of new low molecular mass inhibitors of the West Nile virus NS2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 427 3 شماره
صفحات -
تاریخ انتشار 2010