Optimising biocatalyst design for obtaining high transesterification activity by α-chymotrypsin in non-aqueous media
نویسندگان
چکیده
BACKGROUND Enzymes are often used in organic solvents for catalyzing organic synthesis. Two enzyme preparations, EPRP (enzyme precipitated and rinsed with n-propanol) and PCMC (protein coated microcrystals) show much higher activities than lyophilized powders in such systems. Both preparations involve precipitation by an organic solvent. The clear understanding of why these preparations show higher catalytic activity than lyophilized powders in organic solvents is not available. RESULTS It was found that EPRPs of alpha-chymotrypsin prepared by precipitation with n-propanol in the presence of trehalose contained substantial amount of trehalose (even though trehalose alone at these lower concentrations was not precipitated by n-propanol). The presence of trehalose in these EPRPs resulted in much higher transesterification rates (45.2 nmoles mg(-1) min(-1)) as compared with EPRPs prepared in the absence of trehalose (16.6 nmoles mg(-1) min(-1)) in octane. Both kinds of EPRPs gave similar initial transesterification rates in acetonitrile. Use of higher concentrations of trehalose (when trehalose alone also precipitates out), resulted in the formation of PCMCs, which showed higher transesterification rates in both octane and acetonitrile. SEM analysis showed the relative sizes of various preparations. Presence of trehalose resulted in EPRPs of smaller sizes. CONCLUSION The two different forms of enzymes (EPRP and PCMC) known to show higher activity in organic solvents were found to be different only in the way the low molecular weight additive was present along with the protein. Therefore, the enhancement in the transesterification activity in EPRPs prepared in the presence of trehalose was due to: (a) better retention of essential water layer for catalysis due to the presence of the sugar. This effect disappeared where the reaction media was polar as the polar solvent (acetonitrile) is more effective in stripping off the water from the enzyme; (b) reduction in particle size as revealed by SEM. In the case of PCMC, the enhancement in the initial rates was due to an increase in the surface area of the biocatalyst since protein is coated over the core material (trehalose or salt).It is hoped that the insight gained in this work would help in a better understanding for designing high activity biocatalyst preparation of non-aqueous media.
منابع مشابه
Alpha chymotrypsin coated clusters of Fe3O4 nanoparticles for biocatalysis in low water media
UNLABELLED BACKGROUND Enzymes in low water containing non aqueous media are useful for organic synthesis. For example, hydrolases in such media can be used for synthetic purposes. Initial work in this area was carried out with lyophilized powders of enzymes. These were found to have poor activity. Drying (removing bulk water) by precipitation turned out to be a better approach. As enzymes in...
متن کاملShort-Chain Flavor Ester Synthesis in Organic Media by an E. coli Whole-Cell Biocatalyst Expressing a Newly Characterized Heterologous Lipase
Short-chain aliphatic esters are small volatile molecules that produce fruity and pleasant aromas and flavors. Most of these esters are artificially produced or extracted from natural sources at high cost. It is, however, possible to 'naturally' produce these molecules using biocatalysts such as lipases and esterases. A gene coding for a newly uncovered lipase was isolated from a previous metag...
متن کاملProbing Immobilization Mechanism of alpha-chymotrypsin onto Carbon Nanotube in Organic Media by Molecular Dynamics Simulation
The enzyme immobilization has been adopted to enhance the activity and stability of enzymes in non-aqueous enzymatic catalysis. However, the activation and stabilization mechanism has been poorly understood on experiments. Thus, we used molecular dynamics simulation to study the adsorption of α-chymotrypsin (α-ChT) on carbon nanotube (CNT) in aqueous solution and heptane media. The results indi...
متن کاملEnzyme stabilization by covalent binding in nanoporous sol-gel glass for nonaqueous biocatalysis.
A unique nanoporous sol-gel glass possessing a highly ordered porous structure (with a pore size of 153 A in diameter) was examined for use as a support material for enzyme immobilization. A model enzyme, alpha-chymotrypsin, was efficiently bound onto the glass via a bifunctional ligand, trimethoxysilylpropanal, with an active enzyme loading of 0.54 wt%. The glass-bound chymotrypsin exhibited g...
متن کاملDevelopment of Clay Foam Ceramic as a Support for Fungi Immobilization to Biodiesel Production (RESEARCH NOTE)
Biodiesel is an attractive alternative fuel because of its nontoxicity and biodegradability properties. Biodiesel is produced through transesterification of vegetable oils’ triglyceride. It is obtained from vegetable oils or fats either by chemical or enzyme-catalyzed transesterification with methanol or ethanol. By using whole-cell biocatalyst immobilized within biomass support particles (BSPs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry Central Journal
دوره 2 شماره
صفحات -
تاریخ انتشار 2008