Near-Linear Time Approximation Schemes for some Implicit Fractional Packing Problems

نویسندگان

  • Chandra Chekuri
  • Kent Quanrud
چکیده

We consider several implicit fractional packing problems and obtain faster implementations of approximation schemes based on multiplicative-weight updates. This leads to new algorithms with near-linear running times for some fundamental problems in combinatorial optimization. We highlight two concrete applications. The first is to find the maximum fractional packing of spanning trees in a capacitated graph; we obtain a (1− )-approximation in Õ ( m/ 2 ) time, where m is the number of edges in the graph. Second, we consider the LP relaxation of the weighted unsplittable flow problem on a path and obtain a (1− )-approximation in Õ ( n/ 2 ) time, where n is the number of demands.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

Near Linear Time Approximation Schemes for Uncapacitated and Capacitated b-Matching Problems in Nonbipartite Graphs

We present the first fully polynomial approximation schemes for the maximum weighted (uncapacitated or capacitated) b–Matching problems for nonbipartite graphs that run in time (near) linear in the number of edges, that is, given any constant δ > 0 the algorithm produces a (1 − δ) approximation in O(mpoly(δ−1, logn)) time. We provide fractional solutions for the standard linear programming form...

متن کامل

The new implicit finite difference method for the solution of time fractional advection-dispersion equation

In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...

متن کامل

An Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation

Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...

متن کامل

Fast and simple approximation schemes for generalized flow

We present fast and simple fully polynomial-time approximation schemes (FPTAS) for generalized versions of maximum flow, multicommodity flow, minimum cost maximum flow, and minimum cost multicommodity flow. We extend and refine fractional packing frameworks introduced in FPTAS’s for traditional multicommodity flow and packing linear programs. Our FPTAS’s dominate the previous best known complex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017