Continuous Blooming of Convex Polyhedra
نویسندگان
چکیده
We construct the first two continuous bloomings of all convex polyhedra. First, the source unfolding can be continuously bloomed. Second, any unfolding of a convex polyhedron can be refined (further cut, by a linear number of cuts) to have a continuous blooming.
منابع مشابه
Inscribed and Circumscribed Polyhedra for a Convex Body and Continuous Functions on a Sphere in Euclidean Space
Two related problems concerning continuous functions on a sphere Sn−1 ⊂ Rn are studied, together with the problem of finding a family of polyhedra in Rn one of which is inscribed in (respectively, circumscribed about) a given smooth convex body in Rn. In particular, it is proved that, in every convex body K ⊂ R3, one can inscribe an eight-vertex polyhedron obtained by “equiaugmentation” of a si...
متن کاملA Local Collision Avoidance Method for Non-strictly Convex Polyhedra
This paper proposes a local collision avoidance method for non-strictly convex polyhedra with continuous velocities. The main contribution of the method is that non-strictly convex polyhedra can be used as geometric models of the robot and the environment without any approximation. The problem of the continuous interaction generation between polyhedra is reduced to the continuous constraints ge...
متن کاملModelling Decision Problems Via Birkhoff Polyhedra
A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...
متن کاملOn the infinitesimal rigidity of weakly convex polyhedra
The main motivation here is a question: whether any polyhedron which can be subdivided into convex pieces without adding a vertex, and which has the same vertices as a convex polyhedron, is infinitesimally rigid. We prove that it is indeed the case for two classes of polyhedra: those obtained from a convex polyhedron by “denting” at most two edges at a common vertex, and suspensions with a natu...
متن کاملContinuous Flattening of a Regular Tetrahedron with Explicit Mappings
We use the terminology polyhedron for a closed polyhedral surface which is permitted to touch itself but not self-intersect (and so a doubly covered polygon is a polyhedron). A flat folding of a polyhedron is a folding by creases into a multilayered planar shape ([7], [8]). A. Cauchy [4] in 1813 proved that any convex polyhedron is rigid: precisely, if two convex polyhedra P, P ′ are combinator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Graphs and Combinatorics
دوره 27 شماره
صفحات -
تاریخ انتشار 2011