Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress.

نویسندگان

  • Jonas Van der Paal
  • Erik C Neyts
  • Christof C W Verlackt
  • Annemie Bogaerts
چکیده

We performed molecular dynamics simulations to investigate the effect of lipid peroxidation products on the structural and dynamic properties of the cell membrane. Our simulations predict that the lipid order in a phospholipid bilayer, as a model system for the cell membrane, decreases upon addition of lipid peroxidation products. Eventually, when all phospholipids are oxidized, pore formation can occur. This will allow reactive species, such as reactive oxygen and nitrogen species (RONS), to enter the cell and cause oxidative damage to intracellular macromolecules, such as DNA or proteins. On the other hand, upon increasing the cholesterol fraction of lipid bilayers, the cell membrane order increases, eventually reaching a certain threshold, from which cholesterol is able to protect the membrane against pore formation. This finding is crucial for cancer treatment by plasma technology, producing a large number of RONS, as well as for other cancer treatment methods that cause an increase in the concentration of extracellular RONS. Indeed, cancer cells contain less cholesterol than their healthy counterparts. Thus, they will be more vulnerable to the consequences of lipid peroxidation, eventually enabling the penetration of RONS into the interior of the cell, giving rise to oxidative stress, inducing pro-apoptotic factors. This provides, for the first time, molecular level insight why plasma can selectively treat cancer cells, while leaving their healthy counterparts undamaged, as is indeed experimentally demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ferulic acid protects PC12 neurons against hypoxia by inhibiting the p-MAPKs and COX-2 pathways

Objective(s):Hypoxia induces cellular oxidative stress that is associated with neurodegenerative diseases. Here, the protective effects of ferulic acid (FA) on hypoxia-induced neurotoxicity in PC12 cells were evaluated. Materials and Methods:We investigated the effect of FA on PC12 cells subjected to hypoxia stress, in vitro. Results:FA increased cell viability, prevented membrane damage (LDH r...

متن کامل

Oxidative membrane damage and its involvement in gamma radiation-induced apoptotic cell death.

Background: Recent results have provided increasing evidence to support involvement of membrane damage in the mechanism of ionizing radiation induced killing of mammalian cells. These findings have stimulated renewed interest in evaluating the damage to membrane as a primary initiator in radiation-induced cell killing especially in apoptotic death. The present study was aimed to gain deeper ins...

متن کامل

Ameliorating effects of genestein: Study on mice liver glutathione and lipid peroxidation after irradiation

Background: Genistein is a soya isoflavone, which is found naturally in legumes, such as soybeans and chickpeas. Radiation–induced free radicals in turn impair the antioxidative defense mechanism, leading to an increased membrane lipid peroxidation that results in damage of the membrane bound enzyme and may lead to damage or death of cell. Hence, the lipid peroxidation is a good biomar...

متن کامل

Response of Fenugreek plants to short-term salinity stress in relation to lipid peroxidation, antioxidant activity and protein content

To investigate the effect of salinity stress on membrane stability index, membrane lipid peroxidation, catalase activity and protein content of Fenugreek (Trigonellafoenum) an experiment with five levels of short-term salinity stress (0, 50, 100, 150 and 200 mM) was carried out at the laboratory of agriculture faculty of Shahid Bahonar University of Kerman, Iran. The treatments were ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical science

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 2016