Use of Terrestrial Laser Scanner for Rigid Airport Pavement Management
نویسندگان
چکیده
The evaluation of the structural efficiency of airport infrastructures is a complex task. Faulting is one of the most important indicators of rigid pavement performance. The aim of our study is to provide a new method for faulting detection and computation on jointed concrete pavements. Nowadays, the assessment of faulting is performed with the use of laborious and time-consuming measurements that strongly hinder aircraft traffic. We proposed a field procedure for Terrestrial Laser Scanner data acquisition and a computation flow chart in order to identify and quantify the fault size at each joint of apron slabs. The total point cloud has been used to compute the least square plane fitting those points. The best-fit plane for each slab has been computed too. The attitude of each slab plane with respect to both the adjacent ones and the apron reference plane has been determined by the normal vectors to the surfaces. Faulting has been evaluated as the difference in elevation between the slab planes along chosen sections. For a more accurate evaluation of the faulting value, we have then considered a few strips of data covering rectangular areas of different sizes across the joints. The accuracy of the estimated quantities has been computed too.
منابع مشابه
Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms
acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...
متن کاملA novel method for locating the local terrestrial laser scans in a global aerial point cloud
In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...
متن کاملOcclusion Area as Suitable Guidance for Terrestrial Laser Scanner Localization
Terrestrial Laser Scanner (TLS) technology, have altered quickly data acquisition for map production in surveying. In many cases, it is impossible to complete surveying of the desired area without TLS displacement in one station to another. Occlusion is innate in data acquisition, with this type of device. To solve this problem, TLS devices should be placed in different locations and scanning o...
متن کاملLaser Scanning on Road Pavements: A New Approach for Characterizing Surface Texture
The surface layer of road pavement has a particular importance in relation to the satisfaction of the primary demands of locomotion, such as security and eco-compatibility. Among those pavement surface characteristics, the "texture" appears to be one of the most interesting with regard to the attainment of skid resistance. Specifications and regulations, providing a wide range of functional ind...
متن کاملAsphalt Pavement Performance Model of Airport Using Microwave Remote Sensing Satellite
The purpose of this study is to build the binary logit model of an airport pavement that could monitor the pavement condition in near real time using microwave remote sensing satellite, then the relationship between the international roughness index (IRI) of an airport and backscattering values from PALSAR images of the ALOS satellite was determined. Total 390 data were used in analysis. This m...
متن کامل