Axiomatization of frequent itemsets

نویسندگان

  • Toon Calders
  • Jan Paredaens
چکیده

Mining association rules is very popular in the data mining community. Most algorithms designed for finding association rules start with searching for frequent itemsets. Typically, in these algorithms, counting phases and pruning phases are interleaved. In the counting phase, partial information about the frequencies of selected itemsets is gathered. In the pruning phase as much as possible of the search space is pruned, based on the counting information. We introduce frequent set expressions to represent (possible partial) information acquired in the counting phase. A frequent set expression is a pair containing an itemset and a fraction that is a lower bound on the actual frequency of the itemset. A system of frequent sets is a collection of such pairs. We give an axiomatization for those systems that are complete in the sense that they explicitly contain all information they logically imply. Every system of frequent sets has a unique completion that actually represents all knowledge that can be derived. We also study sparse systems, in which not for every frequent set an expression is given. Furthermore, we explore the links with probabilistic logics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MINING FUZZY TEMPORAL ITEMSETS WITHIN VARIOUS TIME INTERVALS IN QUANTITATIVE DATASETS

This research aims at proposing a new method for discovering frequent temporal itemsets in continuous subsets of a dataset with quantitative transactions. It is important to note that although these temporal itemsets may have relatively high textit{support} or occurrence within particular time intervals, they do not necessarily get similar textit{support} across the whole dataset, which makes i...

متن کامل

Data sanitization in association rule mining based on impact factor

Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...

متن کامل

روشی کارا برای کاوش مجموعه اقلام پرتکرار در تحلیل داده‌های سبد خرید

Discovery of hidden and valuable knowledge from large data warehouses is an important research area and has attracted the attention of many researchers in recent years. Most of Association Rule Mining (ARM) algorithms start by searching for frequent itemsets by scanning the whole database repeatedly and enumerating the occurrences of each candidate itemset. In data mining problems, the size of ...

متن کامل

Maximal frequent itemset generation using segmentation approach

Finding frequent itemsets in a data source is a fundamental operation behind Association Rule Mining. Generally, many algorithms use either the bottom-up or top-down approaches for finding these frequent itemsets. When the length of frequent itemsets to be found is large, the traditional algorithms find all the frequent itemsets from 1-length to n-length, which is a difficult process. This prob...

متن کامل

A New Algorithm for High Average-utility Itemset Mining

High utility itemset mining (HUIM) is a new emerging field in data mining which has gained growing interest due to its various applications. The goal of this problem is to discover all itemsets whose utility exceeds minimum threshold. The basic HUIM problem does not consider length of itemsets in its utility measurement and utility values tend to become higher for itemsets containing more items...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 290  شماره 

صفحات  -

تاریخ انتشار 2003