Twenty-five thousand years of fluctuating selection on leopard complex spotting and congenital night blindness in horses.

نویسندگان

  • Arne Ludwig
  • Monika Reissmann
  • Norbert Benecke
  • Rebecca Bellone
  • Edson Sandoval-Castellanos
  • Michael Cieslak
  • Gloria G Fortes
  • Arturo Morales-Muñiz
  • Michael Hofreiter
  • Melanie Pruvost
چکیده

Leopard complex spotting is inherited by the incompletely dominant locus, LP, which also causes congenital stationary night blindness in homozygous horses. We investigated an associated single nucleotide polymorphism in the TRPM1 gene in 96 archaeological bones from 31 localities from Late Pleistocene (approx. 17 000 YBP) to medieval times. The first genetic evidence of LP spotting in Europe dates back to the Pleistocene. We tested for temporal changes in the LP associated allele frequency and estimated coefficients of selection by means of approximate Bayesian computation analyses. Our results show that at least some of the observed frequency changes are congruent with shifts in artificial selection pressure for the leopard complex spotting phenotype. In early domestic horses from Kirklareli-Kanligecit (Turkey) dating to 2700-2200 BC, a remarkably high number of leopard spotted horses (six of 10 individuals) was detected including one adult homozygote. However, LP seems to have largely disappeared during the late Bronze Age, suggesting selection against this phenotype in early domestic horses. During the Iron Age, LP reappeared, probably by reintroduction into the domestic gene pool from wild animals. This picture of alternating selective regimes might explain how genetic diversity was maintained in domestic animals despite selection for specific traits at different times.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for a Retroviral Insertion in TRPM1 as the Cause of Congenital Stationary Night Blindness and Leopard Complex Spotting in the Horse

Leopard complex spotting is a group of white spotting patterns in horses caused by an incompletely dominant gene (LP) where homozygotes (LP/LP) are also affected with congenital stationary night blindness. Previous studies implicated Transient Receptor Potential Cation Channel, Subfamily M, Member 1 (TRPM1) as the best candidate gene for both CSNB and LP. RNA-Seq data pinpointed a 1378 bp inser...

متن کامل

Differential gene expression of TRPM1, the potential cause of congenital stationary night blindness and coat spotting patterns (LP) in the Appaloosa horse (Equus caballus).

The appaloosa coat spotting pattern in horses is caused by a single incomplete dominant gene (LP). Homozygosity for LP (LP/LP) is directly associated with congenital stationary night blindness (CSNB) in Appaloosa horses. LP maps to a 6-cM region on ECA1. We investigated the relative expression of two functional candidate genes located in this LP candidate region (TRPM1 and OCA2), as well as thr...

متن کامل

Redundant contribution of a Transient Receptor Potential cation channel Member 1 exon 11 single nucleotide polymorphism to equine congenital stationary night blindness

BACKGROUND Congenital stationary night-blindness (CSNB) is a recessive autosomal defect in low-light vision in Appaloosa and other horse breeds. This condition has been mapped by linkage analysis to a gene coding for the Transient Receptor Potential cation channel Member 1 (TRPM1). TRPM1 is normally expressed in the ON-bipolar cells of the inner nuclear layer of the retina. Down-regulation of T...

متن کامل

Congenital stationary night blindness: an animal model.

Electroretinographic studies of myctalopic Appaloosa horses demonstrated photopic and scotopic abnormalities similar to those in humans with congenital stationary night blindness (CSNB) of the Schubert-Bornschein type. The phototopic abnormalities consisted of reduced b-wave amplitudes and slower than normal b-wave implict time. The dark-adapted ERG's consisted of a simple negative potential; t...

متن کامل

Genotypes of predomestic horses match phenotypes painted in Paleolithic works of cave art.

Archaeologists often argue whether Paleolithic works of art, cave paintings in particular, constitute reflections of the natural environment of humans at the time. They also debate the extent to which these paintings actually contain creative artistic expression, reflect the phenotypic variation of the surrounding environment, or focus on rare phenotypes. The famous paintings "The Dappled Horse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences

دوره 370 1660  شماره 

صفحات  -

تاریخ انتشار 2015