Facial non-repetitive edge-coloring of plane graphs
نویسندگان
چکیده
A sequence r1, r2, . . . , r2n such that ri = rn+i for all 1 ≤ i ≤ n, is called a repetition. A sequence S is called non-repetitive if no block (i.e. subsequence of consecutive terms of S) is a repetition. Let G be a graph whose edges are coloured. A trail is called non-repetitive if the sequence of colours of its edges is non-repetitive. If G is a plane graph, a facial non-repetitive edge-colouring of G is an edge-colouring such that any facial trail (i.e. trail of consecutive edges on the boundary walk of a face) is non-repetitive. We denote π f (G) the minimum number of colours of a facial non-repetitive edge-colouring of G. In this paper, we show that π f (G) ≤ 8 for any plane graph G. We also get better upper bounds for π f (G) in the cases when G is a tree, a plane triangulation, a simple 3-connected plane graph, a hamiltonian plane graph, an outerplanar graph or a Halin graph. The bound 4 for trees is tight. Key-words: non-repetive edge-colouring, Thue chromatic number, Thue chromatic index, planar graphs ∗ Projet Mascotte, I3S (CNRS and University of Nice-Sophia Antipolis) and INRIA, 2004 Route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France. [email protected] ‡ Institute of Mathematics, Faculty of Science, P. J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia. [stanislav.jendrol, roman.sotak, erika.skrabulakova]@upjs.sk Arête-coloration facialement non-répétitive des graphes plans Résumé : Une suite r1, r2, . . . , r2n telle que ri = rn+i pour tout 1 ≤ i ≤ n, est appelée une répétition. Une suite S est non-répétitive si aucun bloc (i.e. soussuite de termes consécutifs de S) n’est une répétition. Soit G un graphe dont les arêtes sont colorées. Un parcours est non-répétitif si la suite des couleurs de ses arêtes est non-répétitive. Si G est un graphe plan, une arête-coloration facialement non-répétitive est une arête-coloration telle que tout parcours facial (i.e. parcours d’arêtes consécutives sur la frontière d’une face) est non-répétitif. On note π f (G) le nombre minimum de couleurs d’une arête-coloration facialement non-répétitive de G. Dans ce rapport, nous montrons que π f (G) ≤ 8 pour tout graphe plan G. Nous donnons également de meilleures bornes supérieures pour π f (G) lorsque G est un arbre, un graphe plan triangulé, un graphe plan simple et 3-connexe, un graphe plan hamiltonien, une graphe planaire extérieur ou un graphe de Halin. En particulier, pour les arbres nous donnons la borne supérieure de 4 qui est la meilleure possible. Mots-clés : arête-coloration non-répétitive, nombre Thue-chromatique, indice Thue-chromatique, graphes planaires Facial non-repetitive edge-colouring of plane graphs 3
منابع مشابه
Facial Parity 9-Edge-Coloring of Outerplane Graphs
A facial parity edge coloring of a 2-edge-connected plane graph is such an edge coloring in which no two face-adjacent edges (consecutive edges of a facial walk of some face) receive the same color, in addition, for each face f and each color c, either no edge or an odd number of edges incident with f is colored with c. It is known that any 2-edgeconnected plane graph has a facial parity edge c...
متن کاملFacial non-repetitive vertex colouring of some families of 2-connected plane graphs
A sequence a1a2 . . . a2n such that ai = an+i for all 1 ≤ i ≤ n is called a repetition. A sequence S is called non-repetitive if no subsequence of consecutive terms of S is a repetition. Let G be a graph whose vertices are coloured. A path in G is a called nonrepetitive if the sequence of colours of its vertices is non-repetitive. If G is a plane graph, a facial non-repetitive vertex colouring ...
متن کاملDecompositions of plane graphs under parity constrains given by faces
An edge coloring of a plane graph G is facially proper if no two faceadjacent edges of G receive the same color. A facial (facially proper) parity edge coloring of a plane graph G is an (facially proper) edge coloring with the property that, for each color c and each face f of G, either an odd number of edges incident with f is colored with c, or color c does not occur on the edges of f . In th...
متن کاملEdge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 66 شماره
صفحات -
تاریخ انتشار 2011