The role of 2-hydroxyacyl-CoA lyase, a thiamin pyrophosphate-dependent enzyme, in the peroxisomal metabolism of 3-methyl-branched fatty acids and 2-hydroxy straight-chain fatty acids.
نویسندگان
چکیده
2-Hydroxyphytanoyl-CoA lyase (abbreviated as 2-HPCL), renamed to 2-hydroxyacyl-CoA lyase (abbreviated as HACL1), is the first peroxisomal enzyme in mammals that has been found to be dependent on TPP (thiamin pyrophosphate). It was discovered in 1999, when studying alpha-oxidation of phytanic acid. HACL1 has an important role in at least two pathways: (i) the degradation of 3-methyl-branched fatty acids like phytanic acid and (ii) the shortening of 2-hydroxy long-chain fatty acids. In both cases, HACL1 catalyses the cleavage step, which involves the splitting of a carbon-carbon bond between the first and second carbon atom in a 2-hydroxyacyl-CoA intermediate leading to the production of an (n-1) aldehyde and formyl-CoA. The latter is rapidly converted into formate and subsequently to CO(2). HACL1 is a homotetramer and has a PTS (peroxisomal targeting signal) at the C-terminal side (PTS1). No deficiency of HACL1 has been described yet in human, but thiamin deficiency might affect its activity.
منابع مشابه
Breakdown of 2-hydroxylated straight chain fatty acids via peroxisomal 2-hydroxyphytanoyl-CoA lyase: a revised pathway for the alpha-oxidation of straight chain fatty acids.
2-Hydroxyfatty acids, constituents of brain cerebrosides and sulfatides, were previously reported to be degraded by an alpha-oxidation system, generating fatty acids shortened by one carbon atom. In the current study we used labeled and unlabeled 2-hydroxyoctadecanoic acid to reinvestigate the degradation of this class of lipids. Both in intact and broken cell systems formate was identified as ...
متن کاملBreakdown of 2-Hydroxylated Straight Chain Fatty Acids via Peroxisomal 2-Hydroxyphytanoyl-CoA Lyase A REVISED PATHWAY FOR THE -OXIDATION OF STRAIGHT CHAIN FATTY ACIDS*
2-Hydroxyfatty acids, constituents of brain cerebrosides and sulfatides, were previously reported to be degraded by an -oxidation system, generating fatty acids shortened by one carbon atom. In the current study we used labeled and unlabeled 2-hydroxyoctadecanoic acid to reinvestigate the degradation of this class of lipids. Both in intact and broken cell systems formate was identified as a mai...
متن کاملPurification, molecular cloning, and expression of 2-hydroxyphytanoyl-CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon–carbon bond cleavage during a-oxidation of 3-methyl-branched fatty acids
In the third step of the a-oxidation of 3-methyl-branched fatty acids such as phytanic acid, a 2-hydroxy-3-methylacyl-CoA is cleaved into formyl-CoA and a 2-methyl-branched fatty aldehyde. The cleavage enzyme was purified from the matrix protein fraction of rat liver peroxisomes and identified as a protein made up of four identical subunits of 63 kDa. Its activity proved to depend on Mg21 and t...
متن کاملEvidence that multifunctional protein 2, and not multifunctional protein 1, is involved in the peroxisomal beta-oxidation of pristanic acid.
The second (enoyl-CoA hydratase) and third (3-hydroxyacyl-CoA dehydrogenase) steps of peroxisomal beta-oxidation are catalysed by two separate multifunctional proteins (MFPs), MFP-1 being involved in the degradation of straight-chain fatty acids and MFP-2 in the beta-oxidation of the side chain of cholesterol (bile acid synthesis). In the present study we determined which of the two MFPs is inv...
متن کاملPeroxisomal disorders affecting phytanic acid α-oxidation: a review
Peroxisomes are involved in the synthesis and degradation of complex fatty acids. They contain enzymes involved in the α-, βand ω-oxidation pathways for fatty acids. Investigation of these pathways and the diseases associated with mutations in enzymes involved in the degradation of phytanic acid have led to the clarification of the pathophysiology of Refsum’s disease, rhizomelic chondrodysplasi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 35 Pt 5 شماره
صفحات -
تاریخ انتشار 2007