Studying the rapid bioconversion of lignocellulosic sugars into ethanol using high cell density fermentations with cell recycle

نویسندگان

  • Cory Sarks
  • Mingjie Jin
  • Trey K Sato
  • Venkatesh Balan
  • Bruce E Dale
چکیده

BACKGROUND The Rapid Bioconversion with Integrated recycle Technology (RaBIT) process reduces capital costs, processing times, and biocatalyst cost for biochemical conversion of cellulosic biomass to biofuels by reducing total bioprocessing time (enzymatic hydrolysis plus fermentation) to 48 h, increasing biofuel productivity (g/L/h) twofold, and recycling biocatalysts (enzymes and microbes) to the next cycle. To achieve these results, RaBIT utilizes 24-h high cell density fermentations along with cell recycling to solve the slow/incomplete xylose fermentation issue, which is critical for lignocellulosic biofuel fermentations. Previous studies utilizing similar fermentation conditions showed a decrease in xylose consumption when recycling cells into the next fermentation cycle. Eliminating this decrease is critical for RaBIT process effectiveness for high cycle counts. RESULTS Nine different engineered microbial strains (including Saccharomyces cerevisiae strains, Scheffersomyces (Pichia) stipitis strains, Zymomonas mobilis 8b, and Escherichia coli KO11) were tested under RaBIT platform fermentations to determine their suitability for this platform. Fermentation conditions were then optimized for S. cerevisiae GLBRCY128. Three different nutrient sources (corn steep liquor, yeast extract, and wheat germ) were evaluated to improve xylose consumption by recycled cells. Capacitance readings were used to accurately measure viable cell mass profiles over five cycles. CONCLUSION The results showed that not all strains are capable of effectively performing the RaBIT process. Acceptable performance is largely correlated to the specific xylose consumption rate. Corn steep liquor was found to reduce the deleterious impacts of cell recycle and improve specific xylose consumption rates. The viable cell mass profiles indicated that reduction in specific xylose consumption rate, not a drop in viable cell mass, was the main cause for decreasing xylose consumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Furfural on Rapid Ethanol Production Using a Membrane Bioreactor

A membrane bioreactor was developed to counteract the inhibition effect of furfural in ethanol production. Furfural, a major inhibitor in lignocellulosic hydrolyzates, is a highly toxic substance which is formed from pentose sugars released during the acidic degradation of lignocellulosic materials. Continuous cultivations with complete cell retention were performed at a high dilution rate of 0...

متن کامل

Fermentation of Xylose and Glucose Mixture in Intensified Reactors by Scheffersomyces stipitis to Produce Ethanol

In this work, two fermentations at different temperatures (25 and 30oC), with cell recycling, were accomplished to produce ethanol, using a mix of commercial substrates, xylose (70%) and glucose (30%), as organic source for Scheffersomyces stipitis. Five consecutive fermentations of 80 g L (1o, 2o and 3o recycles), 96 g L (4o recycle) and 120 g L (5o recycle)reduced sugars led to a final maximu...

متن کامل

Cofermentation of glucose, xylose, and cellobiose by the beetle-associated yeast Spathaspora passalidarum.

Fermentation of cellulosic and hemicellulosic sugars from biomass could resolve food-versus-fuel conflicts inherent in the bioconversion of grains. However, the inability to coferment glucose and xylose is a major challenge to the economical use of lignocellulose as a feedstock. Simultaneous cofermentation of glucose, xylose, and cellobiose is problematic for most microbes because glucose repre...

متن کامل

Concepts for improving ethanol productivity from lignocellulosic materials: Encapsulated yeast and membrane bioreactors

Lignocellulosic biomass is a potential feedstock for production of sugars, which can be fermented into ethanol. The work presented in this thesis proposes some solutions to overcome problems with suboptimal process performance due to elevated cultivation temperatures and inhibitors present during ethanol production from lignocellulosic materials. In particular, continuous processes operated at ...

متن کامل

Commentary on Succinic Acid and Poly-γ-glutamic Acid Production using Lignocellulosic Waste Biomass

Lignocellulosic biomass, which contains cellulose (40-50%), hemicellulose (25-50%) and lignin (10-40%), is the most abundantly available raw material on Earth [1]. Broadly, it is classified into three categories: virgin biomass, waste biomass and energy crops. Owing to the rapid growth of global population and corresponding agricultural activities, the amount of lignocellulosic waste biomass is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014