Competitive Binding of a Benzimidazole to the Histone-Binding Pocket of the Pygo PHD Finger

نویسندگان

  • Thomas C. R. Miller
  • Trevor J. Rutherford
  • Kristian Birchall
  • Jasveen Chugh
  • Marc Fiedler
  • Mariann Bienz
چکیده

The Pygo-BCL9 complex is a chromatin reader, facilitating β-catenin-mediated oncogenesis, and is thus emerging as a potential therapeutic target for cancer. Its function relies on two ligand-binding surfaces of Pygo's PHD finger that anchor the histone H3 tail methylated at lysine 4 (H3K4me) with assistance from the BCL9 HD1 domain. Here, we report the first use of fragment-based screening by NMR to identify small molecules that block protein-protein interactions by a PHD finger. This led to the discovery of a set of benzothiazoles that bind to a cleft emanating from the PHD-HD1 interface, as defined by X-ray crystallography. Furthermore, we discovered a benzimidazole that docks into the H3K4me specificity pocket and displaces the native H3K4me peptide from the PHD finger. Our study demonstrates the ligandability of the Pygo-BCL9 complex and uncovers a privileged scaffold as a template for future development of lead inhibitors of oncogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allosteric Remodelling of the Histone H3 Binding Pocket in the Pygo2 PHD Finger Triggered by Its Binding to the B9L/BCL9 Co-Factor

The Zn-coordinated PHD fingers of Pygopus (Pygo) proteins are critical for beta-catenin-dependent transcriptional switches in normal and malignant tissues. They bind to methylated histone H3 tails, assisted by their BCL9 co-factors whose homology domain 1 (HD1) binds to the rear PHD surface. Although histone-binding residues are identical between the two human Pygo paralogs, we show here that P...

متن کامل

Decoding of Methylated Histone H3 Tail by the Pygo-BCL9 Wnt Signaling Complex

Pygo and BCL9/Legless transduce the Wnt signal by promoting the transcriptional activity of beta-catenin/Armadillo in normal and malignant cells. We show that human and Drosophila Pygo PHD fingers associate with their cognate HD1 domains from BCL9/Legless to bind specifically to the histone H3 tail methylated at lysine 4 (H3K4me). The crystal structures of ternary complexes between PHD, HD1, an...

متن کامل

Evolutionary Adaptation of the Fly Pygo PHD Finger toward Recognizing Histone H3 Tail Methylated at Arginine 2

Pygo proteins promote Armadillo- and β-catenin-dependent transcription, by relieving Groucho-dependent repression of Wnt targets. Their PHD fingers bind histone H3 tail methylated at lysine 4, and to the HD1 domain of their Legless/BCL9 cofactors, linking Pygo to Armadillo/β-catenin. Intriguingly, fly Pygo orthologs exhibit a tryptophan > phenylalanine substitution in their histone pocket-divid...

متن کامل

The PHD domain is required to link Drosophila Pygopus to Legless/β-catenin and not to histone H3

In Drosophila Pygopus (Pygo) and Legless (Lgs)/BCL9 are integral components of the nuclear Wnt/Wg signaling machine. Despite intense research, ideas that account for their mode of action remain speculative. One proposition, based on a recently discovered function of PHD fingers, is that Pygo, through its PHD, may decipher the histone code. We found that human, but not Drosophila, Pygo robustly ...

متن کامل

BINDING OF THE ANTITUMOR DRUG ADRIAMYCIN TO DNA-HISTONE COMPLEXES

Isotherms of the binding of the anthracycIine antibiotic, adriamycin (adriblastin), to DNA histone complexes was studied by means of spectroscopic analysis. The results indicated that: (a) binding of adriamycin to histones reduced the interaction of histones with DNA, (b) binding of the drug to DNA did not change the binding affinity of histone to DNA and, (c) in the explored binding range...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014