Empirical Comparison of Prediction Methods for Electricity Consumption Forecasting

نویسندگان

  • Saima Aman
  • Marc Frincu
  • Charalampos Chelmis
  • Muhammad Usman Noor
  • Yogesh Simmhan
چکیده

Recent years have seen an increasing interest in providing accurate prediction models for electrical energy consumption. In Smart Grids, energy consumption optimization is critical to enhance power grid reliability, and avoid supply-demand mismatches. Utilities rely on real-time power consumption data from individual customers in their service area to forecast the future demand and initiate energy curtailment programs. Currently however, little is known about the differences in consumption characteristics of various customer types, and their impact on the prediction method’s accuracy. While many studies have concentrated on aggregate loads, showing that accurate consumption prediction at the building level can be achieved, there is a lack of results regarding individual customers consumption prediction. In this study, we perform an empirical quantitative evaluation of various prediction methods of kWh energy consumption of two distinct customer types: 1) small, highly variable individual customers, and 2) aggregated, more stable consumption at the building level. We show that prediction accuracy heavily depends on customer type. Contrary to previous studies, we consider the consumption data granularity to be very small (i.e., 15-min interval), and focus on very short term predictions (next few hours). As Smart Grids move closer to dynamic curtailment programs, which enables demand response (DR) events not only on weekdays, but also during weekends, existing DR strategies prove to be inadequate. Here, we relax the constraint of workdays, and include weekends, where ISO models consistently under perform. Nonetheless, we show that simple ISO baselines, and short-term Time Series, which only depend on recent historical data, achieve superior prediction accuracy. This result suggests that large amounts of historical training data are not required, rather they should be avoided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grey Prediction Model for Forecasting Electricity consumption

Accurate prediction of the future electricity consumption is crucial for production electricity management. Since the storage of electrical energy is very difficult, reliable and accurate prediction of power consumption is important. Different approaches for this purpose were used. In this paper, Grey model (1,1) based on grey system theory has been used for forecasting results. Annual electric...

متن کامل

Forecast of Iran’s Electricity Consumption Using a Combined Approach of Neural Networks and Econometrics

Electricity cannot be stored and needs huge amount of capital so producers and consumers pay special attention to predict electricity consumption. Besides, time-series data of the electricity market are chaotic and complicated. Nonlinear methods such as Neural Networks have shown better performance for predicting such kind of data. We also need to analyze other variables affecting electricity c...

متن کامل

Yearly Electricity Consumption Forecasting using a Nonhomogeneous Exponential Model Optimized by PSO Algorithm

Yearly electricity consumption trends of most developing countries usually exhibit approximately exponential growth curves. An optimized nonhomogeneous exponential model (ONEM) is proposed as a method of forecasting electricity consumption by using trend extrapolation. The parameters of the nonhomogeneous exponential equation are obtained by using the inverse accumulated generating operation, d...

متن کامل

Artificial neural networks for electricity consumption forecasting considering climatic factors

This work develops Artificial Neural Networks (ANN) models applied to predict the consumption forecasting considering climatic factors. It is intended to verify the influence of climatic factors on the electricity consumption forecasting through the ANN. The case study is applied in the Campinas city, Brazil. This work used Perceptron and Backpropagation ANN models. The specific goal is compari...

متن کامل

Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach

Demand planning for electricity consumption is a key success factor for the development of any countries. However, this can only be achieved if the demand is forecasted accurately. In this research, different forecasting methods—autoregressive integrated moving average (ARIMA), artificial neural network (ANN) and multiple linear regression (MLR)—were utilized to formulate prediction models of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014