Target recognition of log-polar ladar range images using moment invariants
نویسندگان
چکیده
The ladar range image has received considerable attentions in the automatic target recognition field. However, previous research does not cover target recognition using log-polar ladar range images. Therefore, we construct a target recognition system based on log-polar ladar range images in this paper. In this system combined moment invariants and backpropagation neural network are selected as shape descriptor and shape classifier, respectively. In order to fully analyze the effect of log-polar sampling pattern on recognition result, several comparative experiments based on simulated and real range images are carried out. Eventually, several important conclusions are drawn: (i) if combined moments are computed directly by log-polar range images, translation, rotation and scaling invariant properties of combined moments will be invalid (ii) when object is located in the center of field of view, recognition rate of log-polar range images is less sensitive to the changing of field of view (iii) as object position changes from center to edge of field of view, recognition performance of log-polar range images will decline dramatically (iv) log-polar range images has a better noise robustness than Cartesian range images. Finally, we give a suggestion that it is better to divide field of view into recognition area and searching area in the real application. & 2016 Elsevier Ltd. All rights reserved.
منابع مشابه
Automatic target recognition in laser radar imagery
This paper presents an Automatic Target Recognition (ATR) system for laser radar (LADAR) imagery, designed to classify objects at multiple levels of discrimination (target detection, classification, and recognition) from single LADAR images. Segmentation is performed in both the range and non-range LADAR channels and results combined to increase object detection rate or decrease false positive ...
متن کامل3D Polar-Radius Invariant Moments and Structure Moment Invariants
A novel moment, called 3D polar-radius-invariant-moment, is proposed for the 3D object recognition and classification. Some properties of these new moments including the invariance on translation, scale and rotation transforms are studied and proved. Then structure moment invariants are given to distinguish complicated similar shapes. Examples are presented to illustrate the performance and inv...
متن کاملSmall Targets in LADAR Images Using Fuzzy Clustering
This paper describes an automatic target recognition system for detecting targets in temporal sequences of intensity LADAR images. The system rst nds all objects in the images using a general method that is capable of nding both blobs and curves. Then features of the objects are extracted. Next fuzzy c-means is used to cluster the objects in feature space. Finally, prototypes generated for each...
متن کاملTranslation invariants of Zernike moments
Moment functions de0ned using a polar coordinate representation of the image space, such as radial moments and Zernike moments, are used in several recognition tasks requiring rotation invariance. However, this coordinate representation does not easily yield translation invariant functions, which are also widely sought after in pattern recognition applications. This paper presents a mathematica...
متن کاملMoment Invariants in Image Analysis
This paper aims to present a survey of object recognition/classification methods based on image moments. We review various types of moments (geometric moments, complex moments) and moment-based invariants with respect to various image degradations and distortions (rotation, scaling, affine transform, image blurring, etc.) which can be used as shape descriptors for classification. We explain a g...
متن کامل