Strominger–Yau–Zaslow geometry, Affine Spheres and Painlevé III

نویسنده

  • Maciej Dunajski
چکیده

We give a gauge invariant characterisation of the elliptic affine sphere equation and the closely related Tzitzéica equation as reductions of real forms of SL(3,C) anti–self–dual Yang–Mills equations by two translations, or equivalently as a special case of the Hitchin equation. We use the Loftin–Yau–Zaslow construction to give an explicit expression for a six–real dimensional semi–flat Calabi–Yau metric in terms of a solution to the affine-sphere equation and show how a subclass of such metrics arises from 3rd Painlevé transcendents. email [email protected] email [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Affine Structures on Spheres Duke-cgtp-02-05 and Torus Fibrations of Calabi-yau Toric Hypersurfaces I

We describe in purely combinatorial terms dual pairs of integral affine structures on spheres which come from the conjectural metric collapse of mirror families of Calabi-Yau toric hypersurfaces. The same structures arise on the base of a special Lagrangian torus fibration in the Strominger-Yau-Zaslow conjecture. We study the topological torus fibration in the large complex structure limit and ...

متن کامل

Affine Manifolds, Log Structures, and Mirror Symmetry

We outline work in progress suggesting an algebro-geometric version of the Strominger-Yau-Zaslow conjecture. We define the notion of a toric degeneration, a special case of a maximally unipotent degeneration of Calabi-Yau manifolds. We then show how in this case the dual intersection complex has a natural structure of an affine manifold with singularities. If the degeneration is polarized, we a...

متن کامل

The Strominger-Yau-Zaslow conjecture: From torus fibrations to degenerations

We trace progress and thinking about the Strominger-Yau-Zaslow conjecture since its introduction in 1996. In particular, we aim to explain how the conjecture led to the algebro-geometric program developed by myself and Siebert, whose objective is to explain mirror symmetry by studying degenerations of Calabi-Yau manifolds. We end by outlining how tropical curves arise in the mirror symmetry story.

متن کامل

Mirror Symmetry for Toric Fano Manifolds via Syz Transformations

We construct and apply Strominger-Yau-Zaslow mirror transformations to understand the geometry of the mirror symmetry between toric Fano manifolds and Landau-Ginzburg models.

متن کامل

ar X iv : m at h / 04 05 06 1 v 1 [ m at h . D G ] 4 M ay 2 00 4 AFFINE MANIFOLDS , SYZ GEOMETRY AND THE “ Y ” VERTEX

We study the real Monge-Ampère equation in two and three dimensions, both from the point of view of the SYZ conjecture , where solutions give rise to semi-flat Calabi-Yau's and in affine differential geometry, where solutions yield parabolic affine sphere hypersurfaces. We find explicit examples, connect the holo-morphic function representation to Hitchin's description of special Lagrangian mod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008