Fas/CD95 Deficiency in ApcMin/+ Mice Increases Intestinal Tumor Burden
نویسندگان
چکیده
BACKGROUND Fas, a member of the tumor necrosis family, is responsible for initiating the apoptotic pathway when bound to its ligand, Fas-L. Defects in the Fas-mediated apoptotic pathway have been reported in colorectal cancer. METHODOLOGY/PRINCIPAL FINDINGS In the present study, a variant of the Apc(Min/+) mouse, a model for the human condition, Familial Adenomatous Polyposis (FAP), was generated with an additional deficiency of Fas (Apc(Min/+)/Fas(lpr)) by cross-breeding Apc(Min/+) mice with Fas deficient (Fas(lpr)) mice. One of the main limitations of the Apc(Min/+) mouse model is that it only develops benign polyps. However, Apc(Min/+)/Fas(lpr) mice presented with a dramatic increase in tumor burden relative to Apc(Min/+) mice and invasive lesions at advanced ages. Proliferation and apoptosis markers revealed an increase in cellular proliferation, but negligible changes in apoptosis, while p53 increased at early ages. Fas-L was lower in Apc(Min/+)/Fas(lpr) mice relative to Apc(Min/+) cohorts, which resulted in enhanced inflammation. CONCLUSIONS/SIGNIFICANCE This study demonstrated that imposition of a Fas deletion in an Apc(Min/+) background results in a more aggressive phenotype of the Apc(Min/+) mouse model, with more rapid development of invasive intestinal tumors and a decrease in Fas-L levels.
منابع مشابه
Restoring Retinoic Acid Attenuates Intestinal Inflammation and Tumorigenesis in APCMin/+ Mice.
Chronic intestinal inflammation accompanies familial adenomatous polyposis (FAP) and is a major risk factor for colorectal cancer in patients with this disease, but the cause of such inflammation is unknown. Because retinoic acid (RA) plays a critical role in maintaining immune homeostasis in the intestine, we hypothesized that altered RA metabolism contributes to inflammation and tumorigenesis...
متن کاملCyclin D1 genetic heterozygosity regulates colonic epithelial cell differentiation and tumor number in ApcMin mice.
Constitutive beta-catenin/Tcf activity, the primary transforming events in colorectal carcinoma, occurs through induction of the Wnt pathway or APC gene mutations that cause familial adenomatous polyposis. Mice carrying Apc mutations in their germ line (ApcMin) develop intestinal adenomas. Here, the crossing of ApcMin with cyclin D1-/- mice reduced the intestinal tumor number in animals genetic...
متن کاملInhibition and deficiency of the immunoproteasome subunit LMP7 suppress the development and progression of colorectal carcinoma in mice
New treatment options and drug targets for colorectal carcinoma are a pressing medical need. Inflammation and pro-inflammatory cytokines produced by Th1 and Th17 cells like IL-6, TNF, IL-17 and IL-23 promote the development and growth of colorectal cancer (CRC). The immunoproteasome is a proteasome subtype highly expressed in immune cells but also in the intestine. Since the immunoproteasome pr...
متن کاملTargeting Zfp148 activates p53 and reduces tumor initiation in the gut
The transcription factor Zinc finger protein 148 (Zfp148, ZBP-89, BFCOL, BERF1, htβ) interacts physically with the tumor suppressor p53, but the significance of this interaction is not known. We recently showed that knockout of Zfp148 in mice leads to ectopic activation of p53 in some tissues and cultured fibroblasts, suggesting that Zfp148 represses p53 activity. Here we hypothesize that targe...
متن کاملPlant sterols induce intestinal tumor formation in gender-related manner in ApcMin mice
Background Plant sterols are plant derived dietary compounds that are structurally similar to cholesterol. Plant sterols reduce cholesterol absorption, and therefore plant sterol enriched functional foods are designed to lower blood cholesterol level. Reduction of cholesterol absorption increases the level of intraluminal cholesterol, and high intraluminal cholesterol concentration has been ass...
متن کامل